Oxidation Characteristics of Two FeCrAl Alloys in Air and Steam from 800°C to 1300°C
Iron-chromium-aluminum (FeCrAl) alloys are being investigated as cladding material for urania nuclear fuel in light water power reactors. One extraordinary attribute of the FeCrAl alloys is their resistance to attack by air and steam up to their melting point. It was of interest to study the kinetic...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2018-08, Vol.70 (8), p.1484-1492 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1492 |
---|---|
container_issue | 8 |
container_start_page | 1484 |
container_title | JOM (1989) |
container_volume | 70 |
creator | Rebak, Raul B. Gupta, Vipul K. Larsen, Michael |
description | Iron-chromium-aluminum (FeCrAl) alloys are being investigated as cladding material for urania nuclear fuel in light water power reactors. One extraordinary attribute of the FeCrAl alloys is their resistance to attack by air and steam up to their melting point. It was of interest to study the kinetics of oxidation of FeCrAl from 800°C to 1300°C in air and in steam to determine how the oxides evolve to provide protection to the alloys. The two investigated alloys were APMT (Fe-21Cr-5Al-3Mo) and C26M (Fe-12Cr-6Al-2Mo). Results show that both alloys had similar oxidation kinetics despite their different chemical compositions. For the testing times, the oxidation rate was higher in air than in steam at the higher temperatures (1100–1300°C) and higher in steam than in air at the lower temperatures (800–1100°C). In the lower temperature range, the surface oxide consisted of two layers, an internal layer rich in aluminum and an external layer containing Al, Cr, and Fe. In the higher temperature range, the oxide was a single layer of alumina (no Cr, no Fe, no Mo). |
doi_str_mv | 10.1007/s11837-018-2979-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1511459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154975786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-d59d63c2d038b811ac21a223cb99c6aadd2e0dea9a46727c4cded3f7d02a671c3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURSMEEqXwAWwWzAY_O4ntsYooIFXqQGG1XNuhqdK42Kmgf8U38GW4BImJ6d3h3Kunk2WXQG6AEH4bAQTjmIDAVHKJ5VE2giJnGEQBxymTnONcMHGancW4JqmTSxhlL_OPxuq-8R2qVjpo07vQxL4xEfkaLd49mroqTFo0aVu_j6jp0KQJSHcWPfVOb1Ad_AYJQr4-K9R7BOwnnmcntW6ju_i94-x5ereoHvBsfv9YTWbYMAIS20LakhlqCRNLAaANBU0pM0spTam1tdQR67TUeckpN7mxzrKaW0J1ycGwcXY17Pr0s4qm6Z1ZGd91zvQKCoC8kAm6HqBt8G87F3u19rvQpb8UTY4kL7goEwUDZYKPMbhabUOz0WGvgKiDYzU4VsmxOjhWh2U6dGJiu1cX_pb_L30DWHF9Yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154975786</pqid></control><display><type>article</type><title>Oxidation Characteristics of Two FeCrAl Alloys in Air and Steam from 800°C to 1300°C</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rebak, Raul B. ; Gupta, Vipul K. ; Larsen, Michael</creator><creatorcontrib>Rebak, Raul B. ; Gupta, Vipul K. ; Larsen, Michael ; General Electric Co., Niskayuna, NY (United States)</creatorcontrib><description>Iron-chromium-aluminum (FeCrAl) alloys are being investigated as cladding material for urania nuclear fuel in light water power reactors. One extraordinary attribute of the FeCrAl alloys is their resistance to attack by air and steam up to their melting point. It was of interest to study the kinetics of oxidation of FeCrAl from 800°C to 1300°C in air and in steam to determine how the oxides evolve to provide protection to the alloys. The two investigated alloys were APMT (Fe-21Cr-5Al-3Mo) and C26M (Fe-12Cr-6Al-2Mo). Results show that both alloys had similar oxidation kinetics despite their different chemical compositions. For the testing times, the oxidation rate was higher in air than in steam at the higher temperatures (1100–1300°C) and higher in steam than in air at the lower temperatures (800–1100°C). In the lower temperature range, the surface oxide consisted of two layers, an internal layer rich in aluminum and an external layer containing Al, Cr, and Fe. In the higher temperature range, the oxide was a single layer of alumina (no Cr, no Fe, no Mo).</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-018-2979-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alumina ; Aluminum ; Aluminum oxide ; Chemical attack ; Chemical composition ; Chemistry/Food Science ; Chromium ; Cladding ; Corrosion Behavior ; Discount coupons ; Earth Sciences ; Engineering ; Environment ; Ferrous alloys ; Iron ; Light water ; MATERIALS SCIENCE ; Melting points ; Microscopy ; Molybdenum ; Nuclear fuels ; Nuclear Materials ; Nuclear reactors ; Organic chemistry ; Oxidation ; Oxidation rate ; Physics ; Powder metallurgy ; Power reactors ; Reaction kinetics ; Supercritical CO2 ; Temperature ; Zirconium alloys</subject><ispartof>JOM (1989), 2018-08, Vol.70 (8), p.1484-1492</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science & Business Media Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-d59d63c2d038b811ac21a223cb99c6aadd2e0dea9a46727c4cded3f7d02a671c3</citedby><cites>FETCH-LOGICAL-c3019-d59d63c2d038b811ac21a223cb99c6aadd2e0dea9a46727c4cded3f7d02a671c3</cites><orcidid>0000-0002-8070-4475 ; 0000000280704475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-018-2979-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-018-2979-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511459$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rebak, Raul B.</creatorcontrib><creatorcontrib>Gupta, Vipul K.</creatorcontrib><creatorcontrib>Larsen, Michael</creatorcontrib><creatorcontrib>General Electric Co., Niskayuna, NY (United States)</creatorcontrib><title>Oxidation Characteristics of Two FeCrAl Alloys in Air and Steam from 800°C to 1300°C</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Iron-chromium-aluminum (FeCrAl) alloys are being investigated as cladding material for urania nuclear fuel in light water power reactors. One extraordinary attribute of the FeCrAl alloys is their resistance to attack by air and steam up to their melting point. It was of interest to study the kinetics of oxidation of FeCrAl from 800°C to 1300°C in air and in steam to determine how the oxides evolve to provide protection to the alloys. The two investigated alloys were APMT (Fe-21Cr-5Al-3Mo) and C26M (Fe-12Cr-6Al-2Mo). Results show that both alloys had similar oxidation kinetics despite their different chemical compositions. For the testing times, the oxidation rate was higher in air than in steam at the higher temperatures (1100–1300°C) and higher in steam than in air at the lower temperatures (800–1100°C). In the lower temperature range, the surface oxide consisted of two layers, an internal layer rich in aluminum and an external layer containing Al, Cr, and Fe. In the higher temperature range, the oxide was a single layer of alumina (no Cr, no Fe, no Mo).</description><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Chemical attack</subject><subject>Chemical composition</subject><subject>Chemistry/Food Science</subject><subject>Chromium</subject><subject>Cladding</subject><subject>Corrosion Behavior</subject><subject>Discount coupons</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ferrous alloys</subject><subject>Iron</subject><subject>Light water</subject><subject>MATERIALS SCIENCE</subject><subject>Melting points</subject><subject>Microscopy</subject><subject>Molybdenum</subject><subject>Nuclear fuels</subject><subject>Nuclear Materials</subject><subject>Nuclear reactors</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Physics</subject><subject>Powder metallurgy</subject><subject>Power reactors</subject><subject>Reaction kinetics</subject><subject>Supercritical CO2</subject><subject>Temperature</subject><subject>Zirconium alloys</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAURSMEEqXwAWwWzAY_O4ntsYooIFXqQGG1XNuhqdK42Kmgf8U38GW4BImJ6d3h3Kunk2WXQG6AEH4bAQTjmIDAVHKJ5VE2giJnGEQBxymTnONcMHGancW4JqmTSxhlL_OPxuq-8R2qVjpo07vQxL4xEfkaLd49mroqTFo0aVu_j6jp0KQJSHcWPfVOb1Ad_AYJQr4-K9R7BOwnnmcntW6ju_i94-x5ereoHvBsfv9YTWbYMAIS20LakhlqCRNLAaANBU0pM0spTam1tdQR67TUeckpN7mxzrKaW0J1ycGwcXY17Pr0s4qm6Z1ZGd91zvQKCoC8kAm6HqBt8G87F3u19rvQpb8UTY4kL7goEwUDZYKPMbhabUOz0WGvgKiDYzU4VsmxOjhWh2U6dGJiu1cX_pb_L30DWHF9Yg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Rebak, Raul B.</creator><creator>Gupta, Vipul K.</creator><creator>Larsen, Michael</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8070-4475</orcidid><orcidid>https://orcid.org/0000000280704475</orcidid></search><sort><creationdate>20180801</creationdate><title>Oxidation Characteristics of Two FeCrAl Alloys in Air and Steam from 800°C to 1300°C</title><author>Rebak, Raul B. ; Gupta, Vipul K. ; Larsen, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-d59d63c2d038b811ac21a223cb99c6aadd2e0dea9a46727c4cded3f7d02a671c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Chemical attack</topic><topic>Chemical composition</topic><topic>Chemistry/Food Science</topic><topic>Chromium</topic><topic>Cladding</topic><topic>Corrosion Behavior</topic><topic>Discount coupons</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ferrous alloys</topic><topic>Iron</topic><topic>Light water</topic><topic>MATERIALS SCIENCE</topic><topic>Melting points</topic><topic>Microscopy</topic><topic>Molybdenum</topic><topic>Nuclear fuels</topic><topic>Nuclear Materials</topic><topic>Nuclear reactors</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Physics</topic><topic>Powder metallurgy</topic><topic>Power reactors</topic><topic>Reaction kinetics</topic><topic>Supercritical CO2</topic><topic>Temperature</topic><topic>Zirconium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rebak, Raul B.</creatorcontrib><creatorcontrib>Gupta, Vipul K.</creatorcontrib><creatorcontrib>Larsen, Michael</creatorcontrib><creatorcontrib>General Electric Co., Niskayuna, NY (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rebak, Raul B.</au><au>Gupta, Vipul K.</au><au>Larsen, Michael</au><aucorp>General Electric Co., Niskayuna, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation Characteristics of Two FeCrAl Alloys in Air and Steam from 800°C to 1300°C</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>70</volume><issue>8</issue><spage>1484</spage><epage>1492</epage><pages>1484-1492</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Iron-chromium-aluminum (FeCrAl) alloys are being investigated as cladding material for urania nuclear fuel in light water power reactors. One extraordinary attribute of the FeCrAl alloys is their resistance to attack by air and steam up to their melting point. It was of interest to study the kinetics of oxidation of FeCrAl from 800°C to 1300°C in air and in steam to determine how the oxides evolve to provide protection to the alloys. The two investigated alloys were APMT (Fe-21Cr-5Al-3Mo) and C26M (Fe-12Cr-6Al-2Mo). Results show that both alloys had similar oxidation kinetics despite their different chemical compositions. For the testing times, the oxidation rate was higher in air than in steam at the higher temperatures (1100–1300°C) and higher in steam than in air at the lower temperatures (800–1100°C). In the lower temperature range, the surface oxide consisted of two layers, an internal layer rich in aluminum and an external layer containing Al, Cr, and Fe. In the higher temperature range, the oxide was a single layer of alumina (no Cr, no Fe, no Mo).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-018-2979-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8070-4475</orcidid><orcidid>https://orcid.org/0000000280704475</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2018-08, Vol.70 (8), p.1484-1492 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_osti_scitechconnect_1511459 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alumina Aluminum Aluminum oxide Chemical attack Chemical composition Chemistry/Food Science Chromium Cladding Corrosion Behavior Discount coupons Earth Sciences Engineering Environment Ferrous alloys Iron Light water MATERIALS SCIENCE Melting points Microscopy Molybdenum Nuclear fuels Nuclear Materials Nuclear reactors Organic chemistry Oxidation Oxidation rate Physics Powder metallurgy Power reactors Reaction kinetics Supercritical CO2 Temperature Zirconium alloys |
title | Oxidation Characteristics of Two FeCrAl Alloys in Air and Steam from 800°C to 1300°C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20Characteristics%20of%20Two%20FeCrAl%20Alloys%20in%20Air%20and%20Steam%20from%20800%C2%B0C%20to%201300%C2%B0C&rft.jtitle=JOM%20(1989)&rft.au=Rebak,%20Raul%20B.&rft.aucorp=General%20Electric%20Co.,%20Niskayuna,%20NY%20(United%20States)&rft.date=2018-08-01&rft.volume=70&rft.issue=8&rft.spage=1484&rft.epage=1492&rft.pages=1484-1492&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-018-2979-9&rft_dat=%3Cproquest_osti_%3E2154975786%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154975786&rft_id=info:pmid/&rfr_iscdi=true |