Augmented Topological Descriptors of Pore Networks for Material Science
One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO 2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2012-12, Vol.18 (12), p.2041-2050 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2050 |
---|---|
container_issue | 12 |
container_start_page | 2041 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 18 |
creator | Ushizima, D. Morozov, D. Weber, G. H. Bianchi, A. G. C. Sethian, J. A. Bethel, E. W. |
description | One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO 2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material. |
doi_str_mv | 10.1109/TVCG.2012.200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1511341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327208</ieee_id><sourcerecordid>1711548435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-1d0ab0976a4e183ae56e104ffab362faeb31188ff723467fc10c500978cf7ec3</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_AglfqjPfZUKEO99DL2vSSTmTnKtt0KagsuXkM2-6LR2ck2yVD8782y6qGXXl4C-bxHHl_GPiCcIkL_dXEzm59yQF4K7LFD7CXW0IB6U-7QtjVXXB2wo5TuAVDKrn_LDrgSTVvaD9n8bLpd05hpVS3CJgzh1lszVN8o2eg3OcRUBVf9DpGqK8p_Q3xIlQuxujSZoi_y2noaLb1j-84Mid4_n8ds8eP7Yvazvvg1P5-dXdRWSsg1rsAsoW-VkYSdMNQoQpDOmaVQ3BlaCsSuc67lQqrWWQTbQGnorGvJimP2eTc2pOx1sj6TvbNhHMlmjQ2ikFjQlx3axPBnopT12idLw2BGClPSWFZvZCdF83_KOXaq_FQWevIPvQ9THMuyGhG54H2jtqreKRtDSpGc3kS_NvFRI-htYHobmN4GVgoU_-l56rRc0-pVvyRUwMcd8ET0-qwEbzl04gmIf5bL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112329564</pqid></control><display><type>article</type><title>Augmented Topological Descriptors of Pore Networks for Material Science</title><source>IEEE Electronic Library (IEL)</source><creator>Ushizima, D. ; Morozov, D. ; Weber, G. H. ; Bianchi, A. G. C. ; Sethian, J. A. ; Bethel, E. W.</creator><creatorcontrib>Ushizima, D. ; Morozov, D. ; Weber, G. H. ; Bianchi, A. G. C. ; Sethian, J. A. ; Bethel, E. W. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO 2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.200</identifier><identifier>PMID: 26357110</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Beads ; Biomineralization ; Carbon dioxide ; geometric algorithms ; Geophysical measurements ; Image segmentation ; Information analysis ; MATERIALS SCIENCE ; Mathematical models ; Microscopy ; Networks ; Permeability ; persistent homology ; Porosity ; Reeb graph ; segmentation ; Sequestration ; topological data analysis ; Topology</subject><ispartof>IEEE transactions on visualization and computer graphics, 2012-12, Vol.18 (12), p.2041-2050</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-1d0ab0976a4e183ae56e104ffab362faeb31188ff723467fc10c500978cf7ec3</citedby><cites>FETCH-LOGICAL-c440t-1d0ab0976a4e183ae56e104ffab362faeb31188ff723467fc10c500978cf7ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511341$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ushizima, D.</creatorcontrib><creatorcontrib>Morozov, D.</creatorcontrib><creatorcontrib>Weber, G. H.</creatorcontrib><creatorcontrib>Bianchi, A. G. C.</creatorcontrib><creatorcontrib>Sethian, J. A.</creatorcontrib><creatorcontrib>Bethel, E. W.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Augmented Topological Descriptors of Pore Networks for Material Science</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO 2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Beads</subject><subject>Biomineralization</subject><subject>Carbon dioxide</subject><subject>geometric algorithms</subject><subject>Geophysical measurements</subject><subject>Image segmentation</subject><subject>Information analysis</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Microscopy</subject><subject>Networks</subject><subject>Permeability</subject><subject>persistent homology</subject><subject>Porosity</subject><subject>Reeb graph</subject><subject>segmentation</subject><subject>Sequestration</subject><subject>topological data analysis</subject><subject>Topology</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9LHDEUB_AglfqjPfZUKEO99DL2vSSTmTnKtt0KagsuXkM2-6LR2ck2yVD8782y6qGXXl4C-bxHHl_GPiCcIkL_dXEzm59yQF4K7LFD7CXW0IB6U-7QtjVXXB2wo5TuAVDKrn_LDrgSTVvaD9n8bLpd05hpVS3CJgzh1lszVN8o2eg3OcRUBVf9DpGqK8p_Q3xIlQuxujSZoi_y2noaLb1j-84Mid4_n8ds8eP7Yvazvvg1P5-dXdRWSsg1rsAsoW-VkYSdMNQoQpDOmaVQ3BlaCsSuc67lQqrWWQTbQGnorGvJimP2eTc2pOx1sj6TvbNhHMlmjQ2ikFjQlx3axPBnopT12idLw2BGClPSWFZvZCdF83_KOXaq_FQWevIPvQ9THMuyGhG54H2jtqreKRtDSpGc3kS_NvFRI-htYHobmN4GVgoU_-l56rRc0-pVvyRUwMcd8ET0-qwEbzl04gmIf5bL</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Ushizima, D.</creator><creator>Morozov, D.</creator><creator>Weber, G. H.</creator><creator>Bianchi, A. G. C.</creator><creator>Sethian, J. A.</creator><creator>Bethel, E. W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20121201</creationdate><title>Augmented Topological Descriptors of Pore Networks for Material Science</title><author>Ushizima, D. ; Morozov, D. ; Weber, G. H. ; Bianchi, A. G. C. ; Sethian, J. A. ; Bethel, E. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-1d0ab0976a4e183ae56e104ffab362faeb31188ff723467fc10c500978cf7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Beads</topic><topic>Biomineralization</topic><topic>Carbon dioxide</topic><topic>geometric algorithms</topic><topic>Geophysical measurements</topic><topic>Image segmentation</topic><topic>Information analysis</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Microscopy</topic><topic>Networks</topic><topic>Permeability</topic><topic>persistent homology</topic><topic>Porosity</topic><topic>Reeb graph</topic><topic>segmentation</topic><topic>Sequestration</topic><topic>topological data analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ushizima, D.</creatorcontrib><creatorcontrib>Morozov, D.</creatorcontrib><creatorcontrib>Weber, G. H.</creatorcontrib><creatorcontrib>Bianchi, A. G. C.</creatorcontrib><creatorcontrib>Sethian, J. A.</creatorcontrib><creatorcontrib>Bethel, E. W.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ushizima, D.</au><au>Morozov, D.</au><au>Weber, G. H.</au><au>Bianchi, A. G. C.</au><au>Sethian, J. A.</au><au>Bethel, E. W.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Topological Descriptors of Pore Networks for Material Science</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>18</volume><issue>12</issue><spage>2041</spage><epage>2050</epage><pages>2041-2050</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO 2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357110</pmid><doi>10.1109/TVCG.2012.200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2012-12, Vol.18 (12), p.2041-2050 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_osti_scitechconnect_1511341 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Beads Biomineralization Carbon dioxide geometric algorithms Geophysical measurements Image segmentation Information analysis MATERIALS SCIENCE Mathematical models Microscopy Networks Permeability persistent homology Porosity Reeb graph segmentation Sequestration topological data analysis Topology |
title | Augmented Topological Descriptors of Pore Networks for Material Science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Topological%20Descriptors%20of%20Pore%20Networks%20for%20Material%20Science&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Ushizima,%20D.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2012-12-01&rft.volume=18&rft.issue=12&rft.spage=2041&rft.epage=2050&rft.pages=2041-2050&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.200&rft_dat=%3Cproquest_RIE%3E1711548435%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112329564&rft_id=info:pmid/26357110&rft_ieee_id=6327208&rfr_iscdi=true |