Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems

In this paper, we present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-01, Vol.123 (3)
Hauptverfasser: Wang, Xiaoxin, Yu, Xiaobai, Fu, Sidan, Lee, Eldred, Kekalo, Katerina, Liu, Jifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 123
creator Wang, Xiaoxin
Yu, Xiaobai
Fu, Sidan
Lee, Eldred
Kekalo, Katerina
Liu, Jifeng
description In this paper, we present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency, Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. Lastly, these results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1511165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1511165</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15111653</originalsourceid><addsrcrecordid>eNqNjU1OwzAQha2KSg2UO4y6t2RThSZrfsQB2FeuO0kGOXY0MyDBGXpoLNQDsHqL973vrUzjXdfbQ9u6G9M49-Bt1x_6jbkV-XDO-27fN-byjEJjhpDPUBalmX6CUslQBsghlyWwUkxoFxpnzIpnkJICg2DCqPSFEE5S-IQMsdRpHgWGwjDROFnFeUEO-slY2xyrgP-Yq0Qn5DkkkG-pqGzNeghJ8P6ad2b3-vL-9GaLKB0lkmKcqifX56NvvfeP7f5f0C9mg1ix</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Xiaoxin ; Yu, Xiaobai ; Fu, Sidan ; Lee, Eldred ; Kekalo, Katerina ; Liu, Jifeng</creator><creatorcontrib>Wang, Xiaoxin ; Yu, Xiaobai ; Fu, Sidan ; Lee, Eldred ; Kekalo, Katerina ; Liu, Jifeng ; Dartmouth College, Hanover, NH (United States)</creatorcontrib><description>In this paper, we present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency, Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. Lastly, these results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>MATERIALS SCIENCE ; SOLAR ENERGY</subject><ispartof>Journal of applied physics, 2018-01, Vol.123 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000253918056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1511165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaoxin</creatorcontrib><creatorcontrib>Yu, Xiaobai</creatorcontrib><creatorcontrib>Fu, Sidan</creatorcontrib><creatorcontrib>Lee, Eldred</creatorcontrib><creatorcontrib>Kekalo, Katerina</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Dartmouth College, Hanover, NH (United States)</creatorcontrib><title>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</title><title>Journal of applied physics</title><description>In this paper, we present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency, Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. Lastly, these results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously.</description><subject>MATERIALS SCIENCE</subject><subject>SOLAR ENERGY</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjU1OwzAQha2KSg2UO4y6t2RThSZrfsQB2FeuO0kGOXY0MyDBGXpoLNQDsHqL973vrUzjXdfbQ9u6G9M49-Bt1x_6jbkV-XDO-27fN-byjEJjhpDPUBalmX6CUslQBsghlyWwUkxoFxpnzIpnkJICg2DCqPSFEE5S-IQMsdRpHgWGwjDROFnFeUEO-slY2xyrgP-Yq0Qn5DkkkG-pqGzNeghJ8P6ad2b3-vL-9GaLKB0lkmKcqifX56NvvfeP7f5f0C9mg1ix</recordid><startdate>20180119</startdate><enddate>20180119</enddate><creator>Wang, Xiaoxin</creator><creator>Yu, Xiaobai</creator><creator>Fu, Sidan</creator><creator>Lee, Eldred</creator><creator>Kekalo, Katerina</creator><creator>Liu, Jifeng</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000253918056</orcidid></search><sort><creationdate>20180119</creationdate><title>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</title><author>Wang, Xiaoxin ; Yu, Xiaobai ; Fu, Sidan ; Lee, Eldred ; Kekalo, Katerina ; Liu, Jifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15111653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATERIALS SCIENCE</topic><topic>SOLAR ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoxin</creatorcontrib><creatorcontrib>Yu, Xiaobai</creatorcontrib><creatorcontrib>Fu, Sidan</creatorcontrib><creatorcontrib>Lee, Eldred</creatorcontrib><creatorcontrib>Kekalo, Katerina</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Dartmouth College, Hanover, NH (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoxin</au><au>Yu, Xiaobai</au><au>Fu, Sidan</au><au>Lee, Eldred</au><au>Kekalo, Katerina</au><au>Liu, Jifeng</au><aucorp>Dartmouth College, Hanover, NH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems</atitle><jtitle>Journal of applied physics</jtitle><date>2018-01-19</date><risdate>2018</risdate><volume>123</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>In this paper, we present a systematic approach for the design and optimization of nanoparticle-pigmented solar selective absorbers for operation at 750 °C. Using the scattering and absorption cross-sections calculated by Lorenz-Mie scattering theory as input, we employ a four-flux radiative transfer method to investigate the solar selectivity mechanism and optimize the optical-to-thermal conversion efficiency (ηtherm) as a function of the metallic nanoparticle material, the nanoparticle diameter, the volume fraction, and the coating thickness. Among the nanoparticle material candidates in this study, C54-TiSi2 is the best option with an optimized ηtherm = 87.0% for a solar concentration ratio of C = 100 and ηtherm = 94.4% for C = 1000 at 750 °C. NiSi is also a promising candidate comparable to TiSi2 in thermal efficiency, Experimentally, an un-optimized 200 nm-diameter TiSi2 nanoparticle-silicone solar selective coating has already achieved ηtherm = 89.8% for C = 1000 at 750 °C. This performance is consistent with the theoretical model and close to the thermal efficiency of the commercial Pyromark 2500 coatings (90.1%). We also demonstrate that Ni/NiSi core-shell structures embedded in the SiO1.5 matrix is thermally stable at 750 °C for 1000 h in air. Lastly, these results indicate that silicide cermet coatings are promising to achieve high optical performance and high temperature thermal stability simultaneously.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000253918056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-01, Vol.123 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1511165
source AIP Journals Complete; Alma/SFX Local Collection
subjects MATERIALS SCIENCE
SOLAR ENERGY
title Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20optimization%20of%20nanoparticle-pigmented%20solar%20selective%20absorber%20coatings%20for%20high-temperature%20concentrating%20solar%20thermal%20systems&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wang,%20Xiaoxin&rft.aucorp=Dartmouth%20College,%20Hanover,%20NH%20(United%20States)&rft.date=2018-01-19&rft.volume=123&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/&rft_dat=%3Costi%3E1511165%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true