An Adaptive Fast Gauss Transform in Two Dimensions

A variety of problems in computational physics and engineering require the convolution of the heat kernel (a Gaussian) with either discrete sources, densities supported on boundaries, or continuous volume distributions. We present a unified fast Gauss transform for this purpose in two dimensions, ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2018-01, Vol.40 (3), p.A1274-A1300
Hauptverfasser: Wang, Jun, Greengard, Leslie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A variety of problems in computational physics and engineering require the convolution of the heat kernel (a Gaussian) with either discrete sources, densities supported on boundaries, or continuous volume distributions. We present a unified fast Gauss transform for this purpose in two dimensions, making use of an adaptive quad-tree discretization on a unit square which is assumed to contain all sources. Our implementation permits either free-space or periodic boundary conditions to be imposed, and is efficient for any choice of variance in the Gaussian.
ISSN:1064-8275
1095-7197
DOI:10.1137/17M1159865