Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin

The growing global concerns about the increased fossil fuel consumption and related environmental issues have motived scientists to find new, green and sustainable energy resources and technologies. In this work, byproduct lignin biomass was successfully converted into sulfur self-doped carbon via i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2018-09, Vol.216 (C), p.508-516
Hauptverfasser: Demir, Muslum, Farghaly, Ahmed A., Decuir, Matthew J., Collinson, Maryanne M., Gupta, Ram B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue C
container_start_page 508
container_title Materials chemistry and physics
container_volume 216
creator Demir, Muslum
Farghaly, Ahmed A.
Decuir, Matthew J.
Collinson, Maryanne M.
Gupta, Ram B.
description The growing global concerns about the increased fossil fuel consumption and related environmental issues have motived scientists to find new, green and sustainable energy resources and technologies. In this work, byproduct lignin biomass was successfully converted into sulfur self-doped carbon via in-situ hydrothermal carbonization followed by thermal annealing. The sulfur surface content in the as-prepared porous carbon is up to 3.2 wt % as indicated by the XPS measurements. Beyond the traditional synthesis methods which employ KOH or ZnCl2 treatment to activate the carbon surface, the developed synthesis strategy doesn't include such separate activation step. Activation of the as-prepared porous carbons has been conducted in-situ via a calcium ions during the synthesis process. The resulting materials displayed high BET surface areas up to 660 m2 g−1 along with micro/meso porosity and graphitic/amorphous carbon structure. The as-prepared sulfur self-doped electrode materials displayed high electrochemical activity for supercapacitor applications. The sulfur-doped carbon SC-850 electrode exhibited capacitance of 225 F/g at a current density of 0.5 A/g, and high durability where the electrode capacitance did not change over 10,000 cycles at harsh conditions. Additionally, the as-prepared sulfur-doped carbons are promising catalysts for oxygen reduction reaction with 3.4 electrons transferred per molecule at 0.8 V, which approaches the optimum 4-electron pathway. [Display omitted] •Sulfur-self doped carbon are prepared via a hydrothermal carbonization followed by self-chemical activation.•Inexpensive and simple manufacturing method.•High specific capacitance along with durability is achieved.•The resulting materials show outstanding ORR activity.
doi_str_mv 10.1016/j.matchemphys.2018.06.008
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1510467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058418305066</els_id><sourcerecordid>2260070595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-4eaa9ae5ae747899d600beada369549bb21fc27c5c7ad4c095228a9732cea6f03</originalsourceid><addsrcrecordid>eNqNkc2O1DAQhC0EEsPCOxg4J2s7P46PaAQL0kp7WDhbnXZnx6OJHexkxfD0eDQcOHLy5atyVRdj76WopZD97bGeYcUDzcvhnGsl5FCLvhZieMF2ctCmahqpXrKdUF1biW5oX7M3OR-FkFrKZsd-P24LJYQF0K8QkDgEx-Ov8xMFnshtuPoYOB4gAa6UfF49Zh4nnrfTtCWe6TRVLi7k-OwxxduZclxiilvmo48VQhqLgSvS58JMKc785J-CD2_ZqwlOmd79fW_Yjy-fv--_VvcPd9_2n-4rbJVeq5YADFAHpFs9GON6IUYCB01vutaMo5ITKo0danAtCtMpNYDRjUKCfhLNDftw9Y0lu82lJ-EBYwiEq5WdFG2vC_TxCi0p_twor_YYtxRKLqtU-VGLznSFMleqFM050WSX5GdIZyuFvexhj_afPexlDyt6W_Yo2v1VS6Xrs6d0iULl4s6nSxIX_X-4_AEi7J1R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260070595</pqid></control><display><type>article</type><title>Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Demir, Muslum ; Farghaly, Ahmed A. ; Decuir, Matthew J. ; Collinson, Maryanne M. ; Gupta, Ram B.</creator><creatorcontrib>Demir, Muslum ; Farghaly, Ahmed A. ; Decuir, Matthew J. ; Collinson, Maryanne M. ; Gupta, Ram B. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The growing global concerns about the increased fossil fuel consumption and related environmental issues have motived scientists to find new, green and sustainable energy resources and technologies. In this work, byproduct lignin biomass was successfully converted into sulfur self-doped carbon via in-situ hydrothermal carbonization followed by thermal annealing. The sulfur surface content in the as-prepared porous carbon is up to 3.2 wt % as indicated by the XPS measurements. Beyond the traditional synthesis methods which employ KOH or ZnCl2 treatment to activate the carbon surface, the developed synthesis strategy doesn't include such separate activation step. Activation of the as-prepared porous carbons has been conducted in-situ via a calcium ions during the synthesis process. The resulting materials displayed high BET surface areas up to 660 m2 g−1 along with micro/meso porosity and graphitic/amorphous carbon structure. The as-prepared sulfur self-doped electrode materials displayed high electrochemical activity for supercapacitor applications. The sulfur-doped carbon SC-850 electrode exhibited capacitance of 225 F/g at a current density of 0.5 A/g, and high durability where the electrode capacitance did not change over 10,000 cycles at harsh conditions. Additionally, the as-prepared sulfur-doped carbons are promising catalysts for oxygen reduction reaction with 3.4 electrons transferred per molecule at 0.8 V, which approaches the optimum 4-electron pathway. [Display omitted] •Sulfur-self doped carbon are prepared via a hydrothermal carbonization followed by self-chemical activation.•Inexpensive and simple manufacturing method.•High specific capacitance along with durability is achieved.•The resulting materials show outstanding ORR activity.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2018.06.008</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activation ; Amorphous materials ; Calcium ions ; Capacitance ; Carbon ; Carbonization ; Cell ; Chemical synthesis ; Clean energy ; Electrode materials ; Electrodes ; Energy sources ; Fossil fuels ; Hydrothermal carbonization ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lignin ; Oxygen reduction ; Oxygen reduction reactions ; Porosity ; Sulfur ; Sulfur-doping ; Supercapacitor ; Zinc chloride</subject><ispartof>Materials chemistry and physics, 2018-09, Vol.216 (C), p.508-516</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-4eaa9ae5ae747899d600beada369549bb21fc27c5c7ad4c095228a9732cea6f03</citedby><cites>FETCH-LOGICAL-c427t-4eaa9ae5ae747899d600beada369549bb21fc27c5c7ad4c095228a9732cea6f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2018.06.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1510467$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Demir, Muslum</creatorcontrib><creatorcontrib>Farghaly, Ahmed A.</creatorcontrib><creatorcontrib>Decuir, Matthew J.</creatorcontrib><creatorcontrib>Collinson, Maryanne M.</creatorcontrib><creatorcontrib>Gupta, Ram B.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin</title><title>Materials chemistry and physics</title><description>The growing global concerns about the increased fossil fuel consumption and related environmental issues have motived scientists to find new, green and sustainable energy resources and technologies. In this work, byproduct lignin biomass was successfully converted into sulfur self-doped carbon via in-situ hydrothermal carbonization followed by thermal annealing. The sulfur surface content in the as-prepared porous carbon is up to 3.2 wt % as indicated by the XPS measurements. Beyond the traditional synthesis methods which employ KOH or ZnCl2 treatment to activate the carbon surface, the developed synthesis strategy doesn't include such separate activation step. Activation of the as-prepared porous carbons has been conducted in-situ via a calcium ions during the synthesis process. The resulting materials displayed high BET surface areas up to 660 m2 g−1 along with micro/meso porosity and graphitic/amorphous carbon structure. The as-prepared sulfur self-doped electrode materials displayed high electrochemical activity for supercapacitor applications. The sulfur-doped carbon SC-850 electrode exhibited capacitance of 225 F/g at a current density of 0.5 A/g, and high durability where the electrode capacitance did not change over 10,000 cycles at harsh conditions. Additionally, the as-prepared sulfur-doped carbons are promising catalysts for oxygen reduction reaction with 3.4 electrons transferred per molecule at 0.8 V, which approaches the optimum 4-electron pathway. [Display omitted] •Sulfur-self doped carbon are prepared via a hydrothermal carbonization followed by self-chemical activation.•Inexpensive and simple manufacturing method.•High specific capacitance along with durability is achieved.•The resulting materials show outstanding ORR activity.</description><subject>Activation</subject><subject>Amorphous materials</subject><subject>Calcium ions</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Carbonization</subject><subject>Cell</subject><subject>Chemical synthesis</subject><subject>Clean energy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy sources</subject><subject>Fossil fuels</subject><subject>Hydrothermal carbonization</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lignin</subject><subject>Oxygen reduction</subject><subject>Oxygen reduction reactions</subject><subject>Porosity</subject><subject>Sulfur</subject><subject>Sulfur-doping</subject><subject>Supercapacitor</subject><subject>Zinc chloride</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkc2O1DAQhC0EEsPCOxg4J2s7P46PaAQL0kp7WDhbnXZnx6OJHexkxfD0eDQcOHLy5atyVRdj76WopZD97bGeYcUDzcvhnGsl5FCLvhZieMF2ctCmahqpXrKdUF1biW5oX7M3OR-FkFrKZsd-P24LJYQF0K8QkDgEx-Ov8xMFnshtuPoYOB4gAa6UfF49Zh4nnrfTtCWe6TRVLi7k-OwxxduZclxiilvmo48VQhqLgSvS58JMKc785J-CD2_ZqwlOmd79fW_Yjy-fv--_VvcPd9_2n-4rbJVeq5YADFAHpFs9GON6IUYCB01vutaMo5ITKo0danAtCtMpNYDRjUKCfhLNDftw9Y0lu82lJ-EBYwiEq5WdFG2vC_TxCi0p_twor_YYtxRKLqtU-VGLznSFMleqFM050WSX5GdIZyuFvexhj_afPexlDyt6W_Yo2v1VS6Xrs6d0iULl4s6nSxIX_X-4_AEi7J1R</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Demir, Muslum</creator><creator>Farghaly, Ahmed A.</creator><creator>Decuir, Matthew J.</creator><creator>Collinson, Maryanne M.</creator><creator>Gupta, Ram B.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin</title><author>Demir, Muslum ; Farghaly, Ahmed A. ; Decuir, Matthew J. ; Collinson, Maryanne M. ; Gupta, Ram B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-4eaa9ae5ae747899d600beada369549bb21fc27c5c7ad4c095228a9732cea6f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Amorphous materials</topic><topic>Calcium ions</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Carbonization</topic><topic>Cell</topic><topic>Chemical synthesis</topic><topic>Clean energy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy sources</topic><topic>Fossil fuels</topic><topic>Hydrothermal carbonization</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lignin</topic><topic>Oxygen reduction</topic><topic>Oxygen reduction reactions</topic><topic>Porosity</topic><topic>Sulfur</topic><topic>Sulfur-doping</topic><topic>Supercapacitor</topic><topic>Zinc chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demir, Muslum</creatorcontrib><creatorcontrib>Farghaly, Ahmed A.</creatorcontrib><creatorcontrib>Decuir, Matthew J.</creatorcontrib><creatorcontrib>Collinson, Maryanne M.</creatorcontrib><creatorcontrib>Gupta, Ram B.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demir, Muslum</au><au>Farghaly, Ahmed A.</au><au>Decuir, Matthew J.</au><au>Collinson, Maryanne M.</au><au>Gupta, Ram B.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin</atitle><jtitle>Materials chemistry and physics</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>216</volume><issue>C</issue><spage>508</spage><epage>516</epage><pages>508-516</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>The growing global concerns about the increased fossil fuel consumption and related environmental issues have motived scientists to find new, green and sustainable energy resources and technologies. In this work, byproduct lignin biomass was successfully converted into sulfur self-doped carbon via in-situ hydrothermal carbonization followed by thermal annealing. The sulfur surface content in the as-prepared porous carbon is up to 3.2 wt % as indicated by the XPS measurements. Beyond the traditional synthesis methods which employ KOH or ZnCl2 treatment to activate the carbon surface, the developed synthesis strategy doesn't include such separate activation step. Activation of the as-prepared porous carbons has been conducted in-situ via a calcium ions during the synthesis process. The resulting materials displayed high BET surface areas up to 660 m2 g−1 along with micro/meso porosity and graphitic/amorphous carbon structure. The as-prepared sulfur self-doped electrode materials displayed high electrochemical activity for supercapacitor applications. The sulfur-doped carbon SC-850 electrode exhibited capacitance of 225 F/g at a current density of 0.5 A/g, and high durability where the electrode capacitance did not change over 10,000 cycles at harsh conditions. Additionally, the as-prepared sulfur-doped carbons are promising catalysts for oxygen reduction reaction with 3.4 electrons transferred per molecule at 0.8 V, which approaches the optimum 4-electron pathway. [Display omitted] •Sulfur-self doped carbon are prepared via a hydrothermal carbonization followed by self-chemical activation.•Inexpensive and simple manufacturing method.•High specific capacitance along with durability is achieved.•The resulting materials show outstanding ORR activity.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2018.06.008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2018-09, Vol.216 (C), p.508-516
issn 0254-0584
1879-3312
language eng
recordid cdi_osti_scitechconnect_1510467
source ScienceDirect Journals (5 years ago - present)
subjects Activation
Amorphous materials
Calcium ions
Capacitance
Carbon
Carbonization
Cell
Chemical synthesis
Clean energy
Electrode materials
Electrodes
Energy sources
Fossil fuels
Hydrothermal carbonization
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lignin
Oxygen reduction
Oxygen reduction reactions
Porosity
Sulfur
Sulfur-doping
Supercapacitor
Zinc chloride
title Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercapacitance%20and%20oxygen%20reduction%20characteristics%20of%20sulfur%20self-doped%20micro/mesoporous%20bio-carbon%20derived%20from%20lignin&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Demir,%20Muslum&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-09-01&rft.volume=216&rft.issue=C&rft.spage=508&rft.epage=516&rft.pages=508-516&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2018.06.008&rft_dat=%3Cproquest_osti_%3E2260070595%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260070595&rft_id=info:pmid/&rft_els_id=S0254058418305066&rfr_iscdi=true