Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance

Performance improvement traditionally realized through a combination of power factor optimization via electronic doping and lattice thermal conductivity reduction using nanostructuring have reached their optimal limits in many leading thermoelectric materials, making further enhancement in the therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019-01, Vol.7 (18), p.11095-11103
Hauptverfasser: R Lu, Lopez, J S, Liu, Y, Bailey, T P, Page, A A, Wang, S, Uher, C, Poudeu, P F P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11103
container_issue 18
container_start_page 11095
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator R Lu
Lopez, J S
Liu, Y
Bailey, T P
Page, A A
Wang, S
Uher, C
Poudeu, P F P
description Performance improvement traditionally realized through a combination of power factor optimization via electronic doping and lattice thermal conductivity reduction using nanostructuring have reached their optimal limits in many leading thermoelectric materials, making further enhancement in the thermoelectric figure of merit extremely challenging. Here, a novel approach to electronic transport engineering using coherent magnetic nanoinclusions is demonstrated. It was found that the incorporation of coherent magnetic full-Heusler (FH) nanoinclusions (Ti(Ni4/3Fe2/3)Sn) into a half-Heusler (HH) matrix (Ti0.25Zr0.25Hf0.5NiSn0.975Sb0.025) with optimal doping level and lattice thermal conductivity leads to high Curie temperature ferromagnetism (Tc ∼ 650 K) along with a large reduction in the effective carrier density within the HH matrix. It is believed that the embedded magnetic FH nanoinclusions interact with the spin of itinerant carriers, leading to charge localization and the formation of overlapping bound magnetic polarons (BMPs). This gives rise to significant enhancements of both carrier mobility and thermopower, which minimizes the reduction in the overall power factor, simultaneously with a large drop in the total thermal conductivity owing to the reduction of the electronic contribution to the thermal conductivity. The implementation of the magnetic nanoinclusions strategy in a variety of state-of-the-art thermoelectric materials could pave the way towards even larger figures of merit.
doi_str_mv 10.1039/c9ta01156k
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1506719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221145070</sourcerecordid><originalsourceid>FETCH-LOGICAL-g128k-5ea3f741b37c7fd25210845f6c5f007c663e47dbff74edce1415a012a6fd35193</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRCMEElXphS-w4BywndhOjqgCilSJSzlHrrNO3Lp2sZ0DfAsfi4GKvexKM9p5mqK4JviO4Kq9V22SmBDG92fFjGKGS1G3_Pz_bprLYhHjDudpMOZtOyu-ln6EAC6hgxwcJKOQk84bp-wUjXcRGddPCpAaZRgAWa-kNZ8yZS1LaJRWlyuYooWApLX-IyILsjduQMmj0QxjuVFIQwj-lBAPSLoegRulU9CjlAEOHiyoFHL8EYL24fCjXRUXWtoIi9OeF29Pj5vlqly_Pr8sH9blQGizLxnISouabCuhhO4powQ3NdNcMY2xUJxXUIt-q7MJegWkJiwXRSXXfcVIW82Lm7-_PibTRWUSqFF55zJSRxjm4td0-2c6Bv8-QUzdzk_BZa6OUkpIzbDA1TdQWXqC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221145070</pqid></control><display><type>article</type><title>Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance</title><source>Royal Society Of Chemistry Journals</source><creator>R Lu ; Lopez, J S ; Liu, Y ; Bailey, T P ; Page, A A ; Wang, S ; Uher, C ; Poudeu, P F P</creator><creatorcontrib>R Lu ; Lopez, J S ; Liu, Y ; Bailey, T P ; Page, A A ; Wang, S ; Uher, C ; Poudeu, P F P</creatorcontrib><description>Performance improvement traditionally realized through a combination of power factor optimization via electronic doping and lattice thermal conductivity reduction using nanostructuring have reached their optimal limits in many leading thermoelectric materials, making further enhancement in the thermoelectric figure of merit extremely challenging. Here, a novel approach to electronic transport engineering using coherent magnetic nanoinclusions is demonstrated. It was found that the incorporation of coherent magnetic full-Heusler (FH) nanoinclusions (Ti(Ni4/3Fe2/3)Sn) into a half-Heusler (HH) matrix (Ti0.25Zr0.25Hf0.5NiSn0.975Sb0.025) with optimal doping level and lattice thermal conductivity leads to high Curie temperature ferromagnetism (Tc ∼ 650 K) along with a large reduction in the effective carrier density within the HH matrix. It is believed that the embedded magnetic FH nanoinclusions interact with the spin of itinerant carriers, leading to charge localization and the formation of overlapping bound magnetic polarons (BMPs). This gives rise to significant enhancements of both carrier mobility and thermopower, which minimizes the reduction in the overall power factor, simultaneously with a large drop in the total thermal conductivity owing to the reduction of the electronic contribution to the thermal conductivity. The implementation of the magnetic nanoinclusions strategy in a variety of state-of-the-art thermoelectric materials could pave the way towards even larger figures of merit.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta01156k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier density ; Carrier mobility ; Coherence ; Curie temperature ; Current carriers ; Doping ; Electron transport ; Ferromagnetism ; Figure of merit ; Heat conductivity ; Heat transfer ; Heusler alloys ; Localization ; Optimization ; Power factor ; Reduction ; Thermal conductivity ; Thermoelectric materials</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019-01, Vol.7 (18), p.11095-11103</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000025229881X ; 0000000224229550 ; 0000000223128942 ; 0000000232701464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1506719$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>R Lu</creatorcontrib><creatorcontrib>Lopez, J S</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Bailey, T P</creatorcontrib><creatorcontrib>Page, A A</creatorcontrib><creatorcontrib>Wang, S</creatorcontrib><creatorcontrib>Uher, C</creatorcontrib><creatorcontrib>Poudeu, P F P</creatorcontrib><title>Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Performance improvement traditionally realized through a combination of power factor optimization via electronic doping and lattice thermal conductivity reduction using nanostructuring have reached their optimal limits in many leading thermoelectric materials, making further enhancement in the thermoelectric figure of merit extremely challenging. Here, a novel approach to electronic transport engineering using coherent magnetic nanoinclusions is demonstrated. It was found that the incorporation of coherent magnetic full-Heusler (FH) nanoinclusions (Ti(Ni4/3Fe2/3)Sn) into a half-Heusler (HH) matrix (Ti0.25Zr0.25Hf0.5NiSn0.975Sb0.025) with optimal doping level and lattice thermal conductivity leads to high Curie temperature ferromagnetism (Tc ∼ 650 K) along with a large reduction in the effective carrier density within the HH matrix. It is believed that the embedded magnetic FH nanoinclusions interact with the spin of itinerant carriers, leading to charge localization and the formation of overlapping bound magnetic polarons (BMPs). This gives rise to significant enhancements of both carrier mobility and thermopower, which minimizes the reduction in the overall power factor, simultaneously with a large drop in the total thermal conductivity owing to the reduction of the electronic contribution to the thermal conductivity. The implementation of the magnetic nanoinclusions strategy in a variety of state-of-the-art thermoelectric materials could pave the way towards even larger figures of merit.</description><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Coherence</subject><subject>Curie temperature</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Electron transport</subject><subject>Ferromagnetism</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heusler alloys</subject><subject>Localization</subject><subject>Optimization</subject><subject>Power factor</subject><subject>Reduction</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRCMEElXphS-w4BywndhOjqgCilSJSzlHrrNO3Lp2sZ0DfAsfi4GKvexKM9p5mqK4JviO4Kq9V22SmBDG92fFjGKGS1G3_Pz_bprLYhHjDudpMOZtOyu-ln6EAC6hgxwcJKOQk84bp-wUjXcRGddPCpAaZRgAWa-kNZ8yZS1LaJRWlyuYooWApLX-IyILsjduQMmj0QxjuVFIQwj-lBAPSLoegRulU9CjlAEOHiyoFHL8EYL24fCjXRUXWtoIi9OeF29Pj5vlqly_Pr8sH9blQGizLxnISouabCuhhO4powQ3NdNcMY2xUJxXUIt-q7MJegWkJiwXRSXXfcVIW82Lm7-_PibTRWUSqFF55zJSRxjm4td0-2c6Bv8-QUzdzk_BZa6OUkpIzbDA1TdQWXqC</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>R Lu</creator><creator>Lopez, J S</creator><creator>Liu, Y</creator><creator>Bailey, T P</creator><creator>Page, A A</creator><creator>Wang, S</creator><creator>Uher, C</creator><creator>Poudeu, P F P</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000025229881X</orcidid><orcidid>https://orcid.org/0000000224229550</orcidid><orcidid>https://orcid.org/0000000223128942</orcidid><orcidid>https://orcid.org/0000000232701464</orcidid></search><sort><creationdate>20190101</creationdate><title>Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance</title><author>R Lu ; Lopez, J S ; Liu, Y ; Bailey, T P ; Page, A A ; Wang, S ; Uher, C ; Poudeu, P F P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g128k-5ea3f741b37c7fd25210845f6c5f007c663e47dbff74edce1415a012a6fd35193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Coherence</topic><topic>Curie temperature</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Electron transport</topic><topic>Ferromagnetism</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heusler alloys</topic><topic>Localization</topic><topic>Optimization</topic><topic>Power factor</topic><topic>Reduction</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>R Lu</creatorcontrib><creatorcontrib>Lopez, J S</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Bailey, T P</creatorcontrib><creatorcontrib>Page, A A</creatorcontrib><creatorcontrib>Wang, S</creatorcontrib><creatorcontrib>Uher, C</creatorcontrib><creatorcontrib>Poudeu, P F P</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R Lu</au><au>Lopez, J S</au><au>Liu, Y</au><au>Bailey, T P</au><au>Page, A A</au><au>Wang, S</au><au>Uher, C</au><au>Poudeu, P F P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><issue>18</issue><spage>11095</spage><epage>11103</epage><pages>11095-11103</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Performance improvement traditionally realized through a combination of power factor optimization via electronic doping and lattice thermal conductivity reduction using nanostructuring have reached their optimal limits in many leading thermoelectric materials, making further enhancement in the thermoelectric figure of merit extremely challenging. Here, a novel approach to electronic transport engineering using coherent magnetic nanoinclusions is demonstrated. It was found that the incorporation of coherent magnetic full-Heusler (FH) nanoinclusions (Ti(Ni4/3Fe2/3)Sn) into a half-Heusler (HH) matrix (Ti0.25Zr0.25Hf0.5NiSn0.975Sb0.025) with optimal doping level and lattice thermal conductivity leads to high Curie temperature ferromagnetism (Tc ∼ 650 K) along with a large reduction in the effective carrier density within the HH matrix. It is believed that the embedded magnetic FH nanoinclusions interact with the spin of itinerant carriers, leading to charge localization and the formation of overlapping bound magnetic polarons (BMPs). This gives rise to significant enhancements of both carrier mobility and thermopower, which minimizes the reduction in the overall power factor, simultaneously with a large drop in the total thermal conductivity owing to the reduction of the electronic contribution to the thermal conductivity. The implementation of the magnetic nanoinclusions strategy in a variety of state-of-the-art thermoelectric materials could pave the way towards even larger figures of merit.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta01156k</doi><tpages>9</tpages><orcidid>https://orcid.org/000000025229881X</orcidid><orcidid>https://orcid.org/0000000224229550</orcidid><orcidid>https://orcid.org/0000000223128942</orcidid><orcidid>https://orcid.org/0000000232701464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019-01, Vol.7 (18), p.11095-11103
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_1506719
source Royal Society Of Chemistry Journals
subjects Carrier density
Carrier mobility
Coherence
Curie temperature
Current carriers
Doping
Electron transport
Ferromagnetism
Figure of merit
Heat conductivity
Heat transfer
Heusler alloys
Localization
Optimization
Power factor
Reduction
Thermal conductivity
Thermoelectric materials
title Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20magnetic%20nanoinclusions%20induce%20charge%20localization%20in%20half-Heusler%20alloys%20leading%20to%20high-Tc%20ferromagnetism%20and%20enhanced%20thermoelectric%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=R%20Lu&rft.date=2019-01-01&rft.volume=7&rft.issue=18&rft.spage=11095&rft.epage=11103&rft.pages=11095-11103&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta01156k&rft_dat=%3Cproquest_osti_%3E2221145070%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221145070&rft_id=info:pmid/&rfr_iscdi=true