Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets

•Present fatigue results for welded lap-shear specimens with 2D profile in Mg/steel.•Observe crack growth pattern in optical micrographs of failed specimens.•Model 2D welds in Mg/steel with ideal geometry and observed weld geometry.•Present K, kI, kII solutions for welds with ideal geometry and obse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2018-02, Vol.189 (C), p.405-426
Hauptverfasser: Rinker, Teresa J., Pan, Jwo, Santella, Michael, Pan, Tsung-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue C
container_start_page 405
container_title Engineering fracture mechanics
container_volume 189
creator Rinker, Teresa J.
Pan, Jwo
Santella, Michael
Pan, Tsung-Yu
description •Present fatigue results for welded lap-shear specimens with 2D profile in Mg/steel.•Observe crack growth pattern in optical micrographs of failed specimens.•Model 2D welds in Mg/steel with ideal geometry and observed weld geometry.•Present K, kI, kII solutions for welds with ideal geometry and observed weld geometry.•Compare experimental fatigue life with estimates from kinked crack growth model. Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens in magnesium and steel sheets is investigated. The welds were produced using a Sonobond ultrasonic spot welder to join magnesium AZ31B-H24 to two types of steel. The lap-shear specimens have been machined into a dog-bone profile to approximate a linear weld. The lap-shear linear welds were studied based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Optical micrographs of the welds after testing were examined to understand the failure modes of the welds. The micrographs show that the welds tested under cyclic loading failed from kinked fatigue cracks growing through the magnesium sheets. The closed-form stress intensity factor solutions for each side of the weld are used to explain the location of fatigue crack initiation and growth. Two-dimensional finite element analyses of the lap-shear specimens with the welds were carried out to obtain the global and local stress intensity factor solutions for the main cracks and kinked cracks, respectively. A kinked fatigue crack growth model based on the global and local stress intensity factor solutions for finite kinked cracks obtained from the finite element analyses is adopted to estimate the fatigue life of the welds. The fatigue life estimations based on the kinked fatigue crack growth model generally underestimate the experimental results. The kinked crack growth model shows little sensitivity to the welding indentation or the thickness of the steel sheet.
doi_str_mv 10.1016/j.engfracmech.2017.11.018
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1506123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794417307622</els_id><sourcerecordid>2065254063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a27e380a0000d3ecef8cecfb0d714d035c43c4eaa50e76a83e1da2e654773a83</originalsourceid><addsrcrecordid>eNqNkMFu3CAQhlHVStmmeQfanu3OGNs4x2iVNJUi9ZJTL4jAOMvKC1uGTZW3L9b20GNOgPj-0T-fEJ8RWgQcv-1bis9ztu5Abtd2gLpFbAGnd2KDk1aNVji8FxsArPfrvr8QH5n3AKDHCTbC3NkSnk8kn2hnX0LKMs3SB-ZwCIvN8rSUbDnF4OQfWjzLEOVijw3vqP7ykVw4UOQ1dfNLobTRSy5Ei6wEFf4kPsx2Ybr6d16Kx7vbx-198_Dz-4_tzUPj-k6Xxnaa1AS29gKvyNE8OXLzE3iNvQc1uF65nqwdgPRoJ0XobUfj0Gut6vNSfDmPTVyCYRdK1eFSjOSKwQFG7FSFvp6hY06_T8TF7NMpx1rLdDAO3dDDuFLXZ8rlxJxpNsccDja_GgSzOjd7859zszo3iKY6r9ntOUt11ZdAea1C0ZEPeW3iU3jDlL9PiJBp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065254063</pqid></control><display><type>article</type><title>Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets</title><source>Elsevier ScienceDirect Journals</source><creator>Rinker, Teresa J. ; Pan, Jwo ; Santella, Michael ; Pan, Tsung-Yu</creator><creatorcontrib>Rinker, Teresa J. ; Pan, Jwo ; Santella, Michael ; Pan, Tsung-Yu</creatorcontrib><description>•Present fatigue results for welded lap-shear specimens with 2D profile in Mg/steel.•Observe crack growth pattern in optical micrographs of failed specimens.•Model 2D welds in Mg/steel with ideal geometry and observed weld geometry.•Present K, kI, kII solutions for welds with ideal geometry and observed weld geometry.•Compare experimental fatigue life with estimates from kinked crack growth model. Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens in magnesium and steel sheets is investigated. The welds were produced using a Sonobond ultrasonic spot welder to join magnesium AZ31B-H24 to two types of steel. The lap-shear specimens have been machined into a dog-bone profile to approximate a linear weld. The lap-shear linear welds were studied based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Optical micrographs of the welds after testing were examined to understand the failure modes of the welds. The micrographs show that the welds tested under cyclic loading failed from kinked fatigue cracks growing through the magnesium sheets. The closed-form stress intensity factor solutions for each side of the weld are used to explain the location of fatigue crack initiation and growth. Two-dimensional finite element analyses of the lap-shear specimens with the welds were carried out to obtain the global and local stress intensity factor solutions for the main cracks and kinked cracks, respectively. A kinked fatigue crack growth model based on the global and local stress intensity factor solutions for finite kinked cracks obtained from the finite element analyses is adopted to estimate the fatigue life of the welds. The fatigue life estimations based on the kinked fatigue crack growth model generally underestimate the experimental results. The kinked crack growth model shows little sensitivity to the welding indentation or the thickness of the steel sheet.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2017.11.018</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>AZ31 ; Closed form solutions ; Crack initiation ; Crack propagation ; Cracks ; Cyclic loads ; Dissimilar welds ; Exact solutions ; Failure modes ; Fatigue crack growth ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue tests ; Finite element method ; Fracture mechanics ; Indentation ; Kinked crack ; Lap-shear specimen ; Magnesium ; Magnesium base alloys ; Materials fatigue ; Mathematical models ; Metal sheets ; Paris law ; Photomicrographs ; Shear ; Spot welders ; Steel ; Stress intensity factors ; Two dimensional analysis ; Ultrasonic welds ; Welded joints</subject><ispartof>Engineering fracture mechanics, 2018-02, Vol.189 (C), p.405-426</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-a27e380a0000d3ecef8cecfb0d714d035c43c4eaa50e76a83e1da2e654773a83</citedby><cites>FETCH-LOGICAL-c427t-a27e380a0000d3ecef8cecfb0d714d035c43c4eaa50e76a83e1da2e654773a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2017.11.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1506123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinker, Teresa J.</creatorcontrib><creatorcontrib>Pan, Jwo</creatorcontrib><creatorcontrib>Santella, Michael</creatorcontrib><creatorcontrib>Pan, Tsung-Yu</creatorcontrib><title>Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets</title><title>Engineering fracture mechanics</title><description>•Present fatigue results for welded lap-shear specimens with 2D profile in Mg/steel.•Observe crack growth pattern in optical micrographs of failed specimens.•Model 2D welds in Mg/steel with ideal geometry and observed weld geometry.•Present K, kI, kII solutions for welds with ideal geometry and observed weld geometry.•Compare experimental fatigue life with estimates from kinked crack growth model. Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens in magnesium and steel sheets is investigated. The welds were produced using a Sonobond ultrasonic spot welder to join magnesium AZ31B-H24 to two types of steel. The lap-shear specimens have been machined into a dog-bone profile to approximate a linear weld. The lap-shear linear welds were studied based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Optical micrographs of the welds after testing were examined to understand the failure modes of the welds. The micrographs show that the welds tested under cyclic loading failed from kinked fatigue cracks growing through the magnesium sheets. The closed-form stress intensity factor solutions for each side of the weld are used to explain the location of fatigue crack initiation and growth. Two-dimensional finite element analyses of the lap-shear specimens with the welds were carried out to obtain the global and local stress intensity factor solutions for the main cracks and kinked cracks, respectively. A kinked fatigue crack growth model based on the global and local stress intensity factor solutions for finite kinked cracks obtained from the finite element analyses is adopted to estimate the fatigue life of the welds. The fatigue life estimations based on the kinked fatigue crack growth model generally underestimate the experimental results. The kinked crack growth model shows little sensitivity to the welding indentation or the thickness of the steel sheet.</description><subject>AZ31</subject><subject>Closed form solutions</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Cyclic loads</subject><subject>Dissimilar welds</subject><subject>Exact solutions</subject><subject>Failure modes</subject><subject>Fatigue crack growth</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Indentation</subject><subject>Kinked crack</subject><subject>Lap-shear specimen</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Metal sheets</subject><subject>Paris law</subject><subject>Photomicrographs</subject><subject>Shear</subject><subject>Spot welders</subject><subject>Steel</subject><subject>Stress intensity factors</subject><subject>Two dimensional analysis</subject><subject>Ultrasonic welds</subject><subject>Welded joints</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMFu3CAQhlHVStmmeQfanu3OGNs4x2iVNJUi9ZJTL4jAOMvKC1uGTZW3L9b20GNOgPj-0T-fEJ8RWgQcv-1bis9ztu5Abtd2gLpFbAGnd2KDk1aNVji8FxsArPfrvr8QH5n3AKDHCTbC3NkSnk8kn2hnX0LKMs3SB-ZwCIvN8rSUbDnF4OQfWjzLEOVijw3vqP7ykVw4UOQ1dfNLobTRSy5Ei6wEFf4kPsx2Ybr6d16Kx7vbx-198_Dz-4_tzUPj-k6Xxnaa1AS29gKvyNE8OXLzE3iNvQc1uF65nqwdgPRoJ0XobUfj0Gut6vNSfDmPTVyCYRdK1eFSjOSKwQFG7FSFvp6hY06_T8TF7NMpx1rLdDAO3dDDuFLXZ8rlxJxpNsccDja_GgSzOjd7859zszo3iKY6r9ntOUt11ZdAea1C0ZEPeW3iU3jDlL9PiJBp</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Rinker, Teresa J.</creator><creator>Pan, Jwo</creator><creator>Santella, Michael</creator><creator>Pan, Tsung-Yu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>20180215</creationdate><title>Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets</title><author>Rinker, Teresa J. ; Pan, Jwo ; Santella, Michael ; Pan, Tsung-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a27e380a0000d3ecef8cecfb0d714d035c43c4eaa50e76a83e1da2e654773a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AZ31</topic><topic>Closed form solutions</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Cyclic loads</topic><topic>Dissimilar welds</topic><topic>Exact solutions</topic><topic>Failure modes</topic><topic>Fatigue crack growth</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Indentation</topic><topic>Kinked crack</topic><topic>Lap-shear specimen</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Metal sheets</topic><topic>Paris law</topic><topic>Photomicrographs</topic><topic>Shear</topic><topic>Spot welders</topic><topic>Steel</topic><topic>Stress intensity factors</topic><topic>Two dimensional analysis</topic><topic>Ultrasonic welds</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinker, Teresa J.</creatorcontrib><creatorcontrib>Pan, Jwo</creatorcontrib><creatorcontrib>Santella, Michael</creatorcontrib><creatorcontrib>Pan, Tsung-Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinker, Teresa J.</au><au>Pan, Jwo</au><au>Santella, Michael</au><au>Pan, Tsung-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2018-02-15</date><risdate>2018</risdate><volume>189</volume><issue>C</issue><spage>405</spage><epage>426</epage><pages>405-426</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Present fatigue results for welded lap-shear specimens with 2D profile in Mg/steel.•Observe crack growth pattern in optical micrographs of failed specimens.•Model 2D welds in Mg/steel with ideal geometry and observed weld geometry.•Present K, kI, kII solutions for welds with ideal geometry and observed weld geometry.•Compare experimental fatigue life with estimates from kinked crack growth model. Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens in magnesium and steel sheets is investigated. The welds were produced using a Sonobond ultrasonic spot welder to join magnesium AZ31B-H24 to two types of steel. The lap-shear specimens have been machined into a dog-bone profile to approximate a linear weld. The lap-shear linear welds were studied based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Optical micrographs of the welds after testing were examined to understand the failure modes of the welds. The micrographs show that the welds tested under cyclic loading failed from kinked fatigue cracks growing through the magnesium sheets. The closed-form stress intensity factor solutions for each side of the weld are used to explain the location of fatigue crack initiation and growth. Two-dimensional finite element analyses of the lap-shear specimens with the welds were carried out to obtain the global and local stress intensity factor solutions for the main cracks and kinked cracks, respectively. A kinked fatigue crack growth model based on the global and local stress intensity factor solutions for finite kinked cracks obtained from the finite element analyses is adopted to estimate the fatigue life of the welds. The fatigue life estimations based on the kinked fatigue crack growth model generally underestimate the experimental results. The kinked crack growth model shows little sensitivity to the welding indentation or the thickness of the steel sheet.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2017.11.018</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2018-02, Vol.189 (C), p.405-426
issn 0013-7944
1873-7315
language eng
recordid cdi_osti_scitechconnect_1506123
source Elsevier ScienceDirect Journals
subjects AZ31
Closed form solutions
Crack initiation
Crack propagation
Cracks
Cyclic loads
Dissimilar welds
Exact solutions
Failure modes
Fatigue crack growth
Fatigue cracks
Fatigue failure
Fatigue life
Fatigue tests
Finite element method
Fracture mechanics
Indentation
Kinked crack
Lap-shear specimen
Magnesium
Magnesium base alloys
Materials fatigue
Mathematical models
Metal sheets
Paris law
Photomicrographs
Shear
Spot welders
Steel
Stress intensity factors
Two dimensional analysis
Ultrasonic welds
Welded joints
title Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20behavior%20of%20dissimilar%20ultrasonic%20welds%20in%20lap-shear%20specimens%20of%20AZ31%20and%20steel%20sheets&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Rinker,%20Teresa%20J.&rft.date=2018-02-15&rft.volume=189&rft.issue=C&rft.spage=405&rft.epage=426&rft.pages=405-426&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2017.11.018&rft_dat=%3Cproquest_osti_%3E2065254063%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065254063&rft_id=info:pmid/&rft_els_id=S0013794417307622&rfr_iscdi=true