Interface pinning of immiscible gravity-exchange flows in porous media
We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinni...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-02, Vol.87 (2), p.023015-023015, Article 023015 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023015 |
---|---|
container_issue | 2 |
container_start_page | 023015 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 87 |
creator | Zhao, Benzhong MacMinn, Christopher W Szulczewski, Michael L Neufeld, Jerome A Huppert, Herbert E Juanes, Ruben |
description | We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the experimental observations, including the x~t(1/2) spreading behavior at intermediate times and the fact that capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially an important, yet unexplored, trapping mechanism during CO(2) sequestration in deep saline aquifers. |
doi_str_mv | 10.1103/PhysRevE.87.023015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1505586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1320164646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-5cfc1c4728e386d1361716b9fa612dd96b0cade435ffbb25a8be945f1e20e2fc3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EoqXwAhyQxYlLin9iJzmiqoVKlUAIzpbjrFujxAlxWujbkyot2sPuYWa08yF0S8mUUsIf3zb78A67-TRNpoRxQsUZGlMhSMR4Is8PN88inggxQlchfBHCGU_jSzRiPM6kpOkYLZa-g9ZqA7hx3ju_xrXFrqpcMC4vAa9bvXPdPoJfs9F-DdiW9U_AzuOmbuttwBUUTl-jC6vLADfHPUGfi_nH7CVavT4vZ0-ryPAk7iJhrKEmTlgKPJUF5ZImVOaZ1ZKyoshkTowuIObC2jxnQqc5ZLGwFBgBZg2foPshtw6dU_2LHZiNqb0H0ykqiBCp7EUPg6hp6-8thE4d2kBZag_9x4pyRqiM--mlbJCatg6hBaua1lW63StK1AGyOkFWaaIGyL3p7pi_zfv2_5YTVf4Hir557A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1320164646</pqid></control><display><type>article</type><title>Interface pinning of immiscible gravity-exchange flows in porous media</title><source>MEDLINE</source><source>American Physical Society</source><creator>Zhao, Benzhong ; MacMinn, Christopher W ; Szulczewski, Michael L ; Neufeld, Jerome A ; Huppert, Herbert E ; Juanes, Ruben</creator><creatorcontrib>Zhao, Benzhong ; MacMinn, Christopher W ; Szulczewski, Michael L ; Neufeld, Jerome A ; Huppert, Herbert E ; Juanes, Ruben ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the experimental observations, including the x~t(1/2) spreading behavior at intermediate times and the fact that capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially an important, yet unexplored, trapping mechanism during CO(2) sequestration in deep saline aquifers.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.87.023015</identifier><identifier>PMID: 23496618</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Simulation ; GEOSCIENCES ; Models, Chemical ; Porosity ; Rheology - methods ; Solutions - chemistry ; Surface Properties</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-02, Vol.87 (2), p.023015-023015, Article 023015</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-5cfc1c4728e386d1361716b9fa612dd96b0cade435ffbb25a8be945f1e20e2fc3</citedby><cites>FETCH-LOGICAL-c374t-5cfc1c4728e386d1361716b9fa612dd96b0cade435ffbb25a8be945f1e20e2fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23496618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1505586$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Benzhong</creatorcontrib><creatorcontrib>MacMinn, Christopher W</creatorcontrib><creatorcontrib>Szulczewski, Michael L</creatorcontrib><creatorcontrib>Neufeld, Jerome A</creatorcontrib><creatorcontrib>Huppert, Herbert E</creatorcontrib><creatorcontrib>Juanes, Ruben</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Interface pinning of immiscible gravity-exchange flows in porous media</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the experimental observations, including the x~t(1/2) spreading behavior at intermediate times and the fact that capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially an important, yet unexplored, trapping mechanism during CO(2) sequestration in deep saline aquifers.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Simulation</subject><subject>GEOSCIENCES</subject><subject>Models, Chemical</subject><subject>Porosity</subject><subject>Rheology - methods</subject><subject>Solutions - chemistry</subject><subject>Surface Properties</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM1OwzAQhC0EoqXwAhyQxYlLin9iJzmiqoVKlUAIzpbjrFujxAlxWujbkyot2sPuYWa08yF0S8mUUsIf3zb78A67-TRNpoRxQsUZGlMhSMR4Is8PN88inggxQlchfBHCGU_jSzRiPM6kpOkYLZa-g9ZqA7hx3ju_xrXFrqpcMC4vAa9bvXPdPoJfs9F-DdiW9U_AzuOmbuttwBUUTl-jC6vLADfHPUGfi_nH7CVavT4vZ0-ryPAk7iJhrKEmTlgKPJUF5ZImVOaZ1ZKyoshkTowuIObC2jxnQqc5ZLGwFBgBZg2foPshtw6dU_2LHZiNqb0H0ykqiBCp7EUPg6hp6-8thE4d2kBZag_9x4pyRqiM--mlbJCatg6hBaua1lW63StK1AGyOkFWaaIGyL3p7pi_zfv2_5YTVf4Hir557A</recordid><startdate>20130219</startdate><enddate>20130219</enddate><creator>Zhao, Benzhong</creator><creator>MacMinn, Christopher W</creator><creator>Szulczewski, Michael L</creator><creator>Neufeld, Jerome A</creator><creator>Huppert, Herbert E</creator><creator>Juanes, Ruben</creator><general>American Physical Society (APS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20130219</creationdate><title>Interface pinning of immiscible gravity-exchange flows in porous media</title><author>Zhao, Benzhong ; MacMinn, Christopher W ; Szulczewski, Michael L ; Neufeld, Jerome A ; Huppert, Herbert E ; Juanes, Ruben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-5cfc1c4728e386d1361716b9fa612dd96b0cade435ffbb25a8be945f1e20e2fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Simulation</topic><topic>GEOSCIENCES</topic><topic>Models, Chemical</topic><topic>Porosity</topic><topic>Rheology - methods</topic><topic>Solutions - chemistry</topic><topic>Surface Properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Benzhong</creatorcontrib><creatorcontrib>MacMinn, Christopher W</creatorcontrib><creatorcontrib>Szulczewski, Michael L</creatorcontrib><creatorcontrib>Neufeld, Jerome A</creatorcontrib><creatorcontrib>Huppert, Herbert E</creatorcontrib><creatorcontrib>Juanes, Ruben</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Benzhong</au><au>MacMinn, Christopher W</au><au>Szulczewski, Michael L</au><au>Neufeld, Jerome A</au><au>Huppert, Herbert E</au><au>Juanes, Ruben</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface pinning of immiscible gravity-exchange flows in porous media</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2013-02-19</date><risdate>2013</risdate><volume>87</volume><issue>2</issue><spage>023015</spage><epage>023015</epage><pages>023015-023015</pages><artnum>023015</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the experimental observations, including the x~t(1/2) spreading behavior at intermediate times and the fact that capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially an important, yet unexplored, trapping mechanism during CO(2) sequestration in deep saline aquifers.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>23496618</pmid><doi>10.1103/PhysRevE.87.023015</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-02, Vol.87 (2), p.023015-023015, Article 023015 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_osti_scitechconnect_1505586 |
source | MEDLINE; American Physical Society |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer Simulation GEOSCIENCES Models, Chemical Porosity Rheology - methods Solutions - chemistry Surface Properties |
title | Interface pinning of immiscible gravity-exchange flows in porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20pinning%20of%20immiscible%20gravity-exchange%20flows%20in%20porous%20media&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Zhao,%20Benzhong&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2013-02-19&rft.volume=87&rft.issue=2&rft.spage=023015&rft.epage=023015&rft.pages=023015-023015&rft.artnum=023015&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.87.023015&rft_dat=%3Cproquest_osti_%3E1320164646%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1320164646&rft_id=info:pmid/23496618&rfr_iscdi=true |