Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics

Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2019-05, Vol.15 (5), p.490-495
Hauptverfasser: Whiteley, Samuel J., Wolfowicz, Gary, Anderson, Christopher P., Bourassa, Alexandre, Ma, He, Ye, Meng, Koolstra, Gerwin, Satzinger, Kevin J., Holt, Martin V., Heremans, F. Joseph, Cleland, Andrew N., Schuster, David I., Galli, Giulia, Awschalom, David D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 5
container_start_page 490
container_title Nature physics
container_volume 15
creator Whiteley, Samuel J.
Wolfowicz, Gary
Anderson, Christopher P.
Bourassa, Alexandre
Ma, He
Ye, Meng
Koolstra, Gerwin
Satzinger, Kevin J.
Holt, Martin V.
Heremans, F. Joseph
Cleland, Andrew N.
Schuster, David I.
Galli, Giulia
Awschalom, David D.
description Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high-quality-factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin–strain coupling for various defects in SiC with C 3v symmetry. This reveals the importance of shear strain for future device engineering and enhanced spin–mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems. The authors use surface acoustic waves, focused in a Gaussian geometry, to manipulate the spin state of divacancy defects in silicon carbide via mechanical driving. They demonstrate that shear strain is important in controlling the spin transitions.
doi_str_mv 10.1038/s41567-019-0420-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1504277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218970300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-d6bd622b8cd449326e2156532764d84a7b3c68fca61aa091b6485cd81a9075c93</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFp9AHcTXY_yN8AsTaPVpMaFuiYMUEtToXJnFu58B9_QJ5FmjK5cATffOfdwEDol-IJgpi6Bk0bIGpO2xpziGu-hCZG8qSlXZP_3LtkhOgJY4wIJwibo_nEb4tfH53aVYopViL3PxvYhRSiPCsIm2DK3JnfB-co4lz2Ad1X3Xs3NABBMrIxNA_TBwjE6WJoN-JOfc4qeb66fZrf14mF-N7ta1JY3tK-d6JygtFPWcd4yKjwt6RtGpeBOcSM7ZoVaWiOIMbglneCqsU4R02LZ2JZN0dnom8paDTb03q5Kzuhtr0lTPidlgc5HaJvT2-Ch1-s05FhyaUqJaiVmGBeKjJTNCSD7pd7m8GryuyZY76rVY7W6VKt31eqdho4aKGx88fnP-X_RNyDle8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218970300</pqid></control><display><type>article</type><title>Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Whiteley, Samuel J. ; Wolfowicz, Gary ; Anderson, Christopher P. ; Bourassa, Alexandre ; Ma, He ; Ye, Meng ; Koolstra, Gerwin ; Satzinger, Kevin J. ; Holt, Martin V. ; Heremans, F. Joseph ; Cleland, Andrew N. ; Schuster, David I. ; Galli, Giulia ; Awschalom, David D.</creator><creatorcontrib>Whiteley, Samuel J. ; Wolfowicz, Gary ; Anderson, Christopher P. ; Bourassa, Alexandre ; Ma, He ; Ye, Meng ; Koolstra, Gerwin ; Satzinger, Kevin J. ; Holt, Martin V. ; Heremans, F. Joseph ; Cleland, Andrew N. ; Schuster, David I. ; Galli, Giulia ; Awschalom, David D. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high-quality-factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin–strain coupling for various defects in SiC with C 3v symmetry. This reveals the importance of shear strain for future device engineering and enhanced spin–mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems. The authors use surface acoustic waves, focused in a Gaussian geometry, to manipulate the spin state of divacancy defects in silicon carbide via mechanical driving. They demonstrate that shear strain is important in controlling the spin transitions.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0420-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/301/119/1000 ; 639/301/119/1001 ; 639/766/483 ; Acoustic resonance ; Acoustics ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Control systems ; Coupling ; Hybrid systems ; Magnetic fields ; Mathematical and Computational Physics ; Mechanical components ; Mechanical systems ; Molecular ; Optical and Plasma Physics ; Paramagnetic resonance ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Point defects ; Shear strain ; Silicon ; Silicon carbide ; Spatial resolution ; Surface acoustic waves ; Theoretical ; Transducers ; Wave diffraction ; X ray imagery ; X-ray diffraction</subject><ispartof>Nature physics, 2019-05, Vol.15 (5), p.490-495</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-d6bd622b8cd449326e2156532764d84a7b3c68fca61aa091b6485cd81a9075c93</citedby><cites>FETCH-LOGICAL-c452t-d6bd622b8cd449326e2156532764d84a7b3c68fca61aa091b6485cd81a9075c93</cites><orcidid>0000-0002-6574-5789 ; 0000-0001-5865-0813 ; 0000-0003-2814-6071 ; 0000-0002-8591-2687 ; 0000000328146071 ; 0000000265745789 ; 0000000285912687 ; 0000000158650813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1504277$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Whiteley, Samuel J.</creatorcontrib><creatorcontrib>Wolfowicz, Gary</creatorcontrib><creatorcontrib>Anderson, Christopher P.</creatorcontrib><creatorcontrib>Bourassa, Alexandre</creatorcontrib><creatorcontrib>Ma, He</creatorcontrib><creatorcontrib>Ye, Meng</creatorcontrib><creatorcontrib>Koolstra, Gerwin</creatorcontrib><creatorcontrib>Satzinger, Kevin J.</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Heremans, F. Joseph</creatorcontrib><creatorcontrib>Cleland, Andrew N.</creatorcontrib><creatorcontrib>Schuster, David I.</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Awschalom, David D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high-quality-factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin–strain coupling for various defects in SiC with C 3v symmetry. This reveals the importance of shear strain for future device engineering and enhanced spin–mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems. The authors use surface acoustic waves, focused in a Gaussian geometry, to manipulate the spin state of divacancy defects in silicon carbide via mechanical driving. They demonstrate that shear strain is important in controlling the spin transitions.</description><subject>639/301/119</subject><subject>639/301/119/1000</subject><subject>639/301/119/1001</subject><subject>639/766/483</subject><subject>Acoustic resonance</subject><subject>Acoustics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Control systems</subject><subject>Coupling</subject><subject>Hybrid systems</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical components</subject><subject>Mechanical systems</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Paramagnetic resonance</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Point defects</subject><subject>Shear strain</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Spatial resolution</subject><subject>Surface acoustic waves</subject><subject>Theoretical</subject><subject>Transducers</subject><subject>Wave diffraction</subject><subject>X ray imagery</subject><subject>X-ray diffraction</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OAyEUhYnRxFp9AHcTXY_yN8AsTaPVpMaFuiYMUEtToXJnFu58B9_QJ5FmjK5cATffOfdwEDol-IJgpi6Bk0bIGpO2xpziGu-hCZG8qSlXZP_3LtkhOgJY4wIJwibo_nEb4tfH53aVYopViL3PxvYhRSiPCsIm2DK3JnfB-co4lz2Ad1X3Xs3NABBMrIxNA_TBwjE6WJoN-JOfc4qeb66fZrf14mF-N7ta1JY3tK-d6JygtFPWcd4yKjwt6RtGpeBOcSM7ZoVaWiOIMbglneCqsU4R02LZ2JZN0dnom8paDTb03q5Kzuhtr0lTPidlgc5HaJvT2-Ch1-s05FhyaUqJaiVmGBeKjJTNCSD7pd7m8GryuyZY76rVY7W6VKt31eqdho4aKGx88fnP-X_RNyDle8A</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Whiteley, Samuel J.</creator><creator>Wolfowicz, Gary</creator><creator>Anderson, Christopher P.</creator><creator>Bourassa, Alexandre</creator><creator>Ma, He</creator><creator>Ye, Meng</creator><creator>Koolstra, Gerwin</creator><creator>Satzinger, Kevin J.</creator><creator>Holt, Martin V.</creator><creator>Heremans, F. Joseph</creator><creator>Cleland, Andrew N.</creator><creator>Schuster, David I.</creator><creator>Galli, Giulia</creator><creator>Awschalom, David D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6574-5789</orcidid><orcidid>https://orcid.org/0000-0001-5865-0813</orcidid><orcidid>https://orcid.org/0000-0003-2814-6071</orcidid><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><orcidid>https://orcid.org/0000000328146071</orcidid><orcidid>https://orcid.org/0000000265745789</orcidid><orcidid>https://orcid.org/0000000285912687</orcidid><orcidid>https://orcid.org/0000000158650813</orcidid></search><sort><creationdate>20190501</creationdate><title>Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics</title><author>Whiteley, Samuel J. ; Wolfowicz, Gary ; Anderson, Christopher P. ; Bourassa, Alexandre ; Ma, He ; Ye, Meng ; Koolstra, Gerwin ; Satzinger, Kevin J. ; Holt, Martin V. ; Heremans, F. Joseph ; Cleland, Andrew N. ; Schuster, David I. ; Galli, Giulia ; Awschalom, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-d6bd622b8cd449326e2156532764d84a7b3c68fca61aa091b6485cd81a9075c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119</topic><topic>639/301/119/1000</topic><topic>639/301/119/1001</topic><topic>639/766/483</topic><topic>Acoustic resonance</topic><topic>Acoustics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Control systems</topic><topic>Coupling</topic><topic>Hybrid systems</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical components</topic><topic>Mechanical systems</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Paramagnetic resonance</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Point defects</topic><topic>Shear strain</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Spatial resolution</topic><topic>Surface acoustic waves</topic><topic>Theoretical</topic><topic>Transducers</topic><topic>Wave diffraction</topic><topic>X ray imagery</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whiteley, Samuel J.</creatorcontrib><creatorcontrib>Wolfowicz, Gary</creatorcontrib><creatorcontrib>Anderson, Christopher P.</creatorcontrib><creatorcontrib>Bourassa, Alexandre</creatorcontrib><creatorcontrib>Ma, He</creatorcontrib><creatorcontrib>Ye, Meng</creatorcontrib><creatorcontrib>Koolstra, Gerwin</creatorcontrib><creatorcontrib>Satzinger, Kevin J.</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Heremans, F. Joseph</creatorcontrib><creatorcontrib>Cleland, Andrew N.</creatorcontrib><creatorcontrib>Schuster, David I.</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Awschalom, David D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whiteley, Samuel J.</au><au>Wolfowicz, Gary</au><au>Anderson, Christopher P.</au><au>Bourassa, Alexandre</au><au>Ma, He</au><au>Ye, Meng</au><au>Koolstra, Gerwin</au><au>Satzinger, Kevin J.</au><au>Holt, Martin V.</au><au>Heremans, F. Joseph</au><au>Cleland, Andrew N.</au><au>Schuster, David I.</au><au>Galli, Giulia</au><au>Awschalom, David D.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>490</spage><epage>495</epage><pages>490-495</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high-quality-factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin–strain coupling for various defects in SiC with C 3v symmetry. This reveals the importance of shear strain for future device engineering and enhanced spin–mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems. The authors use surface acoustic waves, focused in a Gaussian geometry, to manipulate the spin state of divacancy defects in silicon carbide via mechanical driving. They demonstrate that shear strain is important in controlling the spin transitions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0420-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6574-5789</orcidid><orcidid>https://orcid.org/0000-0001-5865-0813</orcidid><orcidid>https://orcid.org/0000-0003-2814-6071</orcidid><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><orcidid>https://orcid.org/0000000328146071</orcidid><orcidid>https://orcid.org/0000000265745789</orcidid><orcidid>https://orcid.org/0000000285912687</orcidid><orcidid>https://orcid.org/0000000158650813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2019-05, Vol.15 (5), p.490-495
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1504277
source Nature; Alma/SFX Local Collection
subjects 639/301/119
639/301/119/1000
639/301/119/1001
639/766/483
Acoustic resonance
Acoustics
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Control systems
Coupling
Hybrid systems
Magnetic fields
Mathematical and Computational Physics
Mechanical components
Mechanical systems
Molecular
Optical and Plasma Physics
Paramagnetic resonance
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Point defects
Shear strain
Silicon
Silicon carbide
Spatial resolution
Surface acoustic waves
Theoretical
Transducers
Wave diffraction
X ray imagery
X-ray diffraction
title Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%E2%80%93phonon%20interactions%20in%20silicon%20carbide%20addressed%20by%20Gaussian%20acoustics&rft.jtitle=Nature%20physics&rft.au=Whiteley,%20Samuel%20J.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-05-01&rft.volume=15&rft.issue=5&rft.spage=490&rft.epage=495&rft.pages=490-495&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0420-0&rft_dat=%3Cproquest_osti_%3E2218970300%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218970300&rft_id=info:pmid/&rfr_iscdi=true