Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode

Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2019-01, Vol.12 (3), p.1088-1099
Hauptverfasser: Lu, Lu, Vakki, Waltteri, Aguiar, Jeffery A, Xiao, Chuanxiao, Hurst, Katherine, Fairchild, Michael, Chen, Xi, Yang, Fan, Gu, Jing, Ren, Zhiyong Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1099
container_issue 3
container_start_page 1088
container_title Energy & environmental science
container_volume 12
creator Lu, Lu
Vakki, Waltteri
Aguiar, Jeffery A
Xiao, Chuanxiao
Hurst, Katherine
Fairchild, Michael
Chen, Xi
Yang, Fan
Gu, Jing
Ren, Zhiyong Jason
description Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time.
doi_str_mv 10.1039/c8ee03673j
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190794500</sourcerecordid><originalsourceid>FETCH-LOGICAL-g130j-1f6ccd472e2b9ec71d0d9b113b0adaa3a90c0aa955b79057363d47f46922b5333</originalsourceid><addsrcrecordid>eNo1kLtOw0AQRS0EEuHR8AUjqA37sL1sGUVAkCJRhNTWPiZkjbMbvGtFaaip-US-BEOgulMcHc29WXZByTUlXN6YW0TCK8Gbg2xERVnkpSDV4f9dSXacncTYEFIxIuQoe1947VRECzG0qoMpg00XbG-SCx62Lq3A9F2HPoFFH13aQb-BFIBxWI_BrL8-PhnoHcy3LsbcrBAjgm6VeYW5AxP6TTvIf0VbFRNuVcIOtAvKB4tn2dFStRHP__I0W9zfPU-m-ezp4XEynuUvlJMmp8vKGFsIhkxLNIJaYqWmlGuirFJcSWKIUrIstZCkFLziA70shr5Ml5zz0-xy7w0xuToal9CsTPAeTappSZiQP9DVHhoWeOsxproJfeeHv2pG5TBXURLCvwE1m2zd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190794500</pqid></control><display><type>article</type><title>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lu, Lu ; Vakki, Waltteri ; Aguiar, Jeffery A ; Xiao, Chuanxiao ; Hurst, Katherine ; Fairchild, Michael ; Chen, Xi ; Yang, Fan ; Gu, Jing ; Ren, Zhiyong Jason</creator><creatorcontrib>Lu, Lu ; Vakki, Waltteri ; Aguiar, Jeffery A ; Xiao, Chuanxiao ; Hurst, Katherine ; Fairchild, Michael ; Chen, Xi ; Yang, Fan ; Gu, Jing ; Ren, Zhiyong Jason ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c8ee03673j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>08 HYDROGEN ; Anodes ; Anodizing ; bioanodes ; black silicon ; Cheese ; Chemical energy ; Chemical oxygen demand ; Computing time ; Dairy products ; Durability ; Energy storage ; Hydrogen production ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Microorganisms ; Organic chemistry ; Oxidation ; Photocathodes ; Photoelectric effect ; Photoelectric emission ; photoelectrochemistry ; Silicon ; Solar energy ; Wastewater treatment</subject><ispartof>Energy &amp; environmental science, 2019-01, Vol.12 (3), p.1088-1099</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000241362249 ; 0000000323602672 ; 0000000161014762 ; 0000000255060049 ; 0000000176060331 ; 0000000282908834 ; 0000000345969504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1502793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Vakki, Waltteri</creatorcontrib><creatorcontrib>Aguiar, Jeffery A</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Hurst, Katherine</creatorcontrib><creatorcontrib>Fairchild, Michael</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><creatorcontrib>Ren, Zhiyong Jason</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</title><title>Energy &amp; environmental science</title><description>Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time.</description><subject>08 HYDROGEN</subject><subject>Anodes</subject><subject>Anodizing</subject><subject>bioanodes</subject><subject>black silicon</subject><subject>Cheese</subject><subject>Chemical energy</subject><subject>Chemical oxygen demand</subject><subject>Computing time</subject><subject>Dairy products</subject><subject>Durability</subject><subject>Energy storage</subject><subject>Hydrogen production</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Microorganisms</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrochemistry</subject><subject>Silicon</subject><subject>Solar energy</subject><subject>Wastewater treatment</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1kLtOw0AQRS0EEuHR8AUjqA37sL1sGUVAkCJRhNTWPiZkjbMbvGtFaaip-US-BEOgulMcHc29WXZByTUlXN6YW0TCK8Gbg2xERVnkpSDV4f9dSXacncTYEFIxIuQoe1947VRECzG0qoMpg00XbG-SCx62Lq3A9F2HPoFFH13aQb-BFIBxWI_BrL8-PhnoHcy3LsbcrBAjgm6VeYW5AxP6TTvIf0VbFRNuVcIOtAvKB4tn2dFStRHP__I0W9zfPU-m-ezp4XEynuUvlJMmp8vKGFsIhkxLNIJaYqWmlGuirFJcSWKIUrIstZCkFLziA70shr5Ml5zz0-xy7w0xuToal9CsTPAeTappSZiQP9DVHhoWeOsxproJfeeHv2pG5TBXURLCvwE1m2zd</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lu, Lu</creator><creator>Vakki, Waltteri</creator><creator>Aguiar, Jeffery A</creator><creator>Xiao, Chuanxiao</creator><creator>Hurst, Katherine</creator><creator>Fairchild, Michael</creator><creator>Chen, Xi</creator><creator>Yang, Fan</creator><creator>Gu, Jing</creator><creator>Ren, Zhiyong Jason</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000241362249</orcidid><orcidid>https://orcid.org/0000000323602672</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000255060049</orcidid><orcidid>https://orcid.org/0000000176060331</orcidid><orcidid>https://orcid.org/0000000282908834</orcidid><orcidid>https://orcid.org/0000000345969504</orcidid></search><sort><creationdate>20190101</creationdate><title>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</title><author>Lu, Lu ; Vakki, Waltteri ; Aguiar, Jeffery A ; Xiao, Chuanxiao ; Hurst, Katherine ; Fairchild, Michael ; Chen, Xi ; Yang, Fan ; Gu, Jing ; Ren, Zhiyong Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g130j-1f6ccd472e2b9ec71d0d9b113b0adaa3a90c0aa955b79057363d47f46922b5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>08 HYDROGEN</topic><topic>Anodes</topic><topic>Anodizing</topic><topic>bioanodes</topic><topic>black silicon</topic><topic>Cheese</topic><topic>Chemical energy</topic><topic>Chemical oxygen demand</topic><topic>Computing time</topic><topic>Dairy products</topic><topic>Durability</topic><topic>Energy storage</topic><topic>Hydrogen production</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Microorganisms</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrochemistry</topic><topic>Silicon</topic><topic>Solar energy</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Vakki, Waltteri</creatorcontrib><creatorcontrib>Aguiar, Jeffery A</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Hurst, Katherine</creatorcontrib><creatorcontrib>Fairchild, Michael</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><creatorcontrib>Ren, Zhiyong Jason</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Lu</au><au>Vakki, Waltteri</au><au>Aguiar, Jeffery A</au><au>Xiao, Chuanxiao</au><au>Hurst, Katherine</au><au>Fairchild, Michael</au><au>Chen, Xi</au><au>Yang, Fan</au><au>Gu, Jing</au><au>Ren, Zhiyong Jason</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>3</issue><spage>1088</spage><epage>1099</epage><pages>1088-1099</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ee03673j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000000241362249</orcidid><orcidid>https://orcid.org/0000000323602672</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000255060049</orcidid><orcidid>https://orcid.org/0000000176060331</orcidid><orcidid>https://orcid.org/0000000282908834</orcidid><orcidid>https://orcid.org/0000000345969504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2019-01, Vol.12 (3), p.1088-1099
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1502793
source Royal Society Of Chemistry Journals 2008-
subjects 08 HYDROGEN
Anodes
Anodizing
bioanodes
black silicon
Cheese
Chemical energy
Chemical oxygen demand
Computing time
Dairy products
Durability
Energy storage
Hydrogen production
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Microorganisms
Organic chemistry
Oxidation
Photocathodes
Photoelectric effect
Photoelectric emission
photoelectrochemistry
Silicon
Solar energy
Wastewater treatment
title Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20solar%20H2%20production%20with%20current%20density%20up%20to%2023%20mA%20cm%E2%88%922%20by%20Swiss-cheese%20black%20Si%20coupled%20with%20wastewater%20bioanode&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Lu,%20Lu&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2019-01-01&rft.volume=12&rft.issue=3&rft.spage=1088&rft.epage=1099&rft.pages=1088-1099&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c8ee03673j&rft_dat=%3Cproquest_osti_%3E2190794500%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190794500&rft_id=info:pmid/&rfr_iscdi=true