Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode
Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a u...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2019-01, Vol.12 (3), p.1088-1099 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1099 |
---|---|
container_issue | 3 |
container_start_page | 1088 |
container_title | Energy & environmental science |
container_volume | 12 |
creator | Lu, Lu Vakki, Waltteri Aguiar, Jeffery A Xiao, Chuanxiao Hurst, Katherine Fairchild, Michael Chen, Xi Yang, Fan Gu, Jing Ren, Zhiyong Jason |
description | Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time. |
doi_str_mv | 10.1039/c8ee03673j |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190794500</sourcerecordid><originalsourceid>FETCH-LOGICAL-g130j-1f6ccd472e2b9ec71d0d9b113b0adaa3a90c0aa955b79057363d47f46922b5333</originalsourceid><addsrcrecordid>eNo1kLtOw0AQRS0EEuHR8AUjqA37sL1sGUVAkCJRhNTWPiZkjbMbvGtFaaip-US-BEOgulMcHc29WXZByTUlXN6YW0TCK8Gbg2xERVnkpSDV4f9dSXacncTYEFIxIuQoe1947VRECzG0qoMpg00XbG-SCx62Lq3A9F2HPoFFH13aQb-BFIBxWI_BrL8-PhnoHcy3LsbcrBAjgm6VeYW5AxP6TTvIf0VbFRNuVcIOtAvKB4tn2dFStRHP__I0W9zfPU-m-ezp4XEynuUvlJMmp8vKGFsIhkxLNIJaYqWmlGuirFJcSWKIUrIstZCkFLziA70shr5Ml5zz0-xy7w0xuToal9CsTPAeTappSZiQP9DVHhoWeOsxproJfeeHv2pG5TBXURLCvwE1m2zd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190794500</pqid></control><display><type>article</type><title>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lu, Lu ; Vakki, Waltteri ; Aguiar, Jeffery A ; Xiao, Chuanxiao ; Hurst, Katherine ; Fairchild, Michael ; Chen, Xi ; Yang, Fan ; Gu, Jing ; Ren, Zhiyong Jason</creator><creatorcontrib>Lu, Lu ; Vakki, Waltteri ; Aguiar, Jeffery A ; Xiao, Chuanxiao ; Hurst, Katherine ; Fairchild, Michael ; Chen, Xi ; Yang, Fan ; Gu, Jing ; Ren, Zhiyong Jason ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c8ee03673j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>08 HYDROGEN ; Anodes ; Anodizing ; bioanodes ; black silicon ; Cheese ; Chemical energy ; Chemical oxygen demand ; Computing time ; Dairy products ; Durability ; Energy storage ; Hydrogen production ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Microorganisms ; Organic chemistry ; Oxidation ; Photocathodes ; Photoelectric effect ; Photoelectric emission ; photoelectrochemistry ; Silicon ; Solar energy ; Wastewater treatment</subject><ispartof>Energy & environmental science, 2019-01, Vol.12 (3), p.1088-1099</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000241362249 ; 0000000323602672 ; 0000000161014762 ; 0000000255060049 ; 0000000176060331 ; 0000000282908834 ; 0000000345969504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1502793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Vakki, Waltteri</creatorcontrib><creatorcontrib>Aguiar, Jeffery A</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Hurst, Katherine</creatorcontrib><creatorcontrib>Fairchild, Michael</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><creatorcontrib>Ren, Zhiyong Jason</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</title><title>Energy & environmental science</title><description>Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time.</description><subject>08 HYDROGEN</subject><subject>Anodes</subject><subject>Anodizing</subject><subject>bioanodes</subject><subject>black silicon</subject><subject>Cheese</subject><subject>Chemical energy</subject><subject>Chemical oxygen demand</subject><subject>Computing time</subject><subject>Dairy products</subject><subject>Durability</subject><subject>Energy storage</subject><subject>Hydrogen production</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Microorganisms</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrochemistry</subject><subject>Silicon</subject><subject>Solar energy</subject><subject>Wastewater treatment</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1kLtOw0AQRS0EEuHR8AUjqA37sL1sGUVAkCJRhNTWPiZkjbMbvGtFaaip-US-BEOgulMcHc29WXZByTUlXN6YW0TCK8Gbg2xERVnkpSDV4f9dSXacncTYEFIxIuQoe1947VRECzG0qoMpg00XbG-SCx62Lq3A9F2HPoFFH13aQb-BFIBxWI_BrL8-PhnoHcy3LsbcrBAjgm6VeYW5AxP6TTvIf0VbFRNuVcIOtAvKB4tn2dFStRHP__I0W9zfPU-m-ezp4XEynuUvlJMmp8vKGFsIhkxLNIJaYqWmlGuirFJcSWKIUrIstZCkFLziA70shr5Ml5zz0-xy7w0xuToal9CsTPAeTappSZiQP9DVHhoWeOsxproJfeeHv2pG5TBXURLCvwE1m2zd</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lu, Lu</creator><creator>Vakki, Waltteri</creator><creator>Aguiar, Jeffery A</creator><creator>Xiao, Chuanxiao</creator><creator>Hurst, Katherine</creator><creator>Fairchild, Michael</creator><creator>Chen, Xi</creator><creator>Yang, Fan</creator><creator>Gu, Jing</creator><creator>Ren, Zhiyong Jason</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000241362249</orcidid><orcidid>https://orcid.org/0000000323602672</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000255060049</orcidid><orcidid>https://orcid.org/0000000176060331</orcidid><orcidid>https://orcid.org/0000000282908834</orcidid><orcidid>https://orcid.org/0000000345969504</orcidid></search><sort><creationdate>20190101</creationdate><title>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</title><author>Lu, Lu ; Vakki, Waltteri ; Aguiar, Jeffery A ; Xiao, Chuanxiao ; Hurst, Katherine ; Fairchild, Michael ; Chen, Xi ; Yang, Fan ; Gu, Jing ; Ren, Zhiyong Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g130j-1f6ccd472e2b9ec71d0d9b113b0adaa3a90c0aa955b79057363d47f46922b5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>08 HYDROGEN</topic><topic>Anodes</topic><topic>Anodizing</topic><topic>bioanodes</topic><topic>black silicon</topic><topic>Cheese</topic><topic>Chemical energy</topic><topic>Chemical oxygen demand</topic><topic>Computing time</topic><topic>Dairy products</topic><topic>Durability</topic><topic>Energy storage</topic><topic>Hydrogen production</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Microorganisms</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrochemistry</topic><topic>Silicon</topic><topic>Solar energy</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Vakki, Waltteri</creatorcontrib><creatorcontrib>Aguiar, Jeffery A</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Hurst, Katherine</creatorcontrib><creatorcontrib>Fairchild, Michael</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Gu, Jing</creatorcontrib><creatorcontrib>Ren, Zhiyong Jason</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Lu</au><au>Vakki, Waltteri</au><au>Aguiar, Jeffery A</au><au>Xiao, Chuanxiao</au><au>Hurst, Katherine</au><au>Fairchild, Michael</au><au>Chen, Xi</au><au>Yang, Fan</au><au>Gu, Jing</au><au>Ren, Zhiyong Jason</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode</atitle><jtitle>Energy & environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>3</issue><spage>1088</spage><epage>1099</epage><pages>1088-1099</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H2 production, which overcomes barriers on anode H2O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm−2) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoSx catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s−1. The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m−2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H2 production practical for the first time.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ee03673j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000000241362249</orcidid><orcidid>https://orcid.org/0000000323602672</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000255060049</orcidid><orcidid>https://orcid.org/0000000176060331</orcidid><orcidid>https://orcid.org/0000000282908834</orcidid><orcidid>https://orcid.org/0000000345969504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2019-01, Vol.12 (3), p.1088-1099 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1502793 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | 08 HYDROGEN Anodes Anodizing bioanodes black silicon Cheese Chemical energy Chemical oxygen demand Computing time Dairy products Durability Energy storage Hydrogen production INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Microorganisms Organic chemistry Oxidation Photocathodes Photoelectric effect Photoelectric emission photoelectrochemistry Silicon Solar energy Wastewater treatment |
title | Unbiased solar H2 production with current density up to 23 mA cm−2 by Swiss-cheese black Si coupled with wastewater bioanode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20solar%20H2%20production%20with%20current%20density%20up%20to%2023%20mA%20cm%E2%88%922%20by%20Swiss-cheese%20black%20Si%20coupled%20with%20wastewater%20bioanode&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Lu,%20Lu&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2019-01-01&rft.volume=12&rft.issue=3&rft.spage=1088&rft.epage=1099&rft.pages=1088-1099&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c8ee03673j&rft_dat=%3Cproquest_osti_%3E2190794500%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190794500&rft_id=info:pmid/&rfr_iscdi=true |