Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors
Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-04, Vol.10 (13), p.11008-11017 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11017 |
---|---|
container_issue | 13 |
container_start_page | 11008 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Aytug, Tolga Rager, Matthew S Higgins, Wesley Brown, Forrest G Veith, Gabriel M Rouleau, Christopher M Wang, Hui Hood, Zachary D Mahurin, Shannon M Mayes, Richard T Joshi, Pooran C Kuruganti, Teja |
description | Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm–2) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications. |
doi_str_mv | 10.1021/acsami.8b01938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013103541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-dbcf9b883358556fc81fc322aa4796322fed63007f9ce41a5577aabfcba9a4083</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEoh9w5YgsTgjJiz_iTXJcVd0WaaUiduFqTZwJ6yqxg-2I9g_xO3GVpTdOM9I8887HWxTvOFtxJvhnMBFGu6pbxhtZvyjOeVOWtBZKvHzOy_KsuIjxnrG1FEy9Ls5Eo0QtuDov_vwAM88j3cRoY8KO7PxvesBxwgBpDkj2jy4dMReJ78k37GaToZsA0xEdkrsH2yE5HK2jWzuM5HpAk4LvMJLeB3Jrfx7pVww5H8GZTAZwcYKALhFwHdkO-GDbAclmGOjeD7aj-wQpj53zBgYmMDb5EN8Ur3oYIr49xcvi-_b6cHVLd3c3X642OwqyqRLtWtM3bV1LqWql1r2peW-kEABl1eTjRY_dWjJW9Y3BkoNSVQXQ9qaFBkpWy8viw6LrY7I65uFojsY7l8_SXDGxZlWGPi7QFPyvGWPSo40GhwEc-jlqwbjkTKqSZ3S1oCb4GAP2egp2hPCoOdNPBurFQH0yMDe8P2nP7YjdM_7PsQx8WoDcqO_9HFz-x__U_gIK16iP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013103541</pqid></control><display><type>article</type><title>Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors</title><source>American Chemical Society Journals</source><creator>Aytug, Tolga ; Rager, Matthew S ; Higgins, Wesley ; Brown, Forrest G ; Veith, Gabriel M ; Rouleau, Christopher M ; Wang, Hui ; Hood, Zachary D ; Mahurin, Shannon M ; Mayes, Richard T ; Joshi, Pooran C ; Kuruganti, Teja</creator><creatorcontrib>Aytug, Tolga ; Rager, Matthew S ; Higgins, Wesley ; Brown, Forrest G ; Veith, Gabriel M ; Rouleau, Christopher M ; Wang, Hui ; Hood, Zachary D ; Mahurin, Shannon M ; Mayes, Richard T ; Joshi, Pooran C ; Kuruganti, Teja ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm–2) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b01938</identifier><identifier>PMID: 29528215</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>flexible electrode ; graphene oxide ; MATERIALS SCIENCE ; optically transparent ; supercapacitor ; thin film</subject><ispartof>ACS applied materials & interfaces, 2018-04, Vol.10 (13), p.11008-11017</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-dbcf9b883358556fc81fc322aa4796322fed63007f9ce41a5577aabfcba9a4083</citedby><cites>FETCH-LOGICAL-a397t-dbcf9b883358556fc81fc322aa4796322fed63007f9ce41a5577aabfcba9a4083</cites><orcidid>0000-0002-5186-4461 ; 0000-0002-7457-3261 ; 0000-0002-5720-4392 ; 0000-0001-7971-5508 ; 0000000337921631 ; 0000000209417975 ; 0000000257204392 ; 0000000179715508 ; 0000000258570378 ; 0000000251864461 ; 0000000274573261 ; 0000000254883537 ; 0000000337044026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b01938$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b01938$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29528215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1502607$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aytug, Tolga</creatorcontrib><creatorcontrib>Rager, Matthew S</creatorcontrib><creatorcontrib>Higgins, Wesley</creatorcontrib><creatorcontrib>Brown, Forrest G</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Rouleau, Christopher M</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Hood, Zachary D</creatorcontrib><creatorcontrib>Mahurin, Shannon M</creatorcontrib><creatorcontrib>Mayes, Richard T</creatorcontrib><creatorcontrib>Joshi, Pooran C</creatorcontrib><creatorcontrib>Kuruganti, Teja</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm–2) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.</description><subject>flexible electrode</subject><subject>graphene oxide</subject><subject>MATERIALS SCIENCE</subject><subject>optically transparent</subject><subject>supercapacitor</subject><subject>thin film</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEoh9w5YgsTgjJiz_iTXJcVd0WaaUiduFqTZwJ6yqxg-2I9g_xO3GVpTdOM9I8887HWxTvOFtxJvhnMBFGu6pbxhtZvyjOeVOWtBZKvHzOy_KsuIjxnrG1FEy9Ls5Eo0QtuDov_vwAM88j3cRoY8KO7PxvesBxwgBpDkj2jy4dMReJ78k37GaToZsA0xEdkrsH2yE5HK2jWzuM5HpAk4LvMJLeB3Jrfx7pVww5H8GZTAZwcYKALhFwHdkO-GDbAclmGOjeD7aj-wQpj53zBgYmMDb5EN8Ur3oYIr49xcvi-_b6cHVLd3c3X642OwqyqRLtWtM3bV1LqWql1r2peW-kEABl1eTjRY_dWjJW9Y3BkoNSVQXQ9qaFBkpWy8viw6LrY7I65uFojsY7l8_SXDGxZlWGPi7QFPyvGWPSo40GhwEc-jlqwbjkTKqSZ3S1oCb4GAP2egp2hPCoOdNPBurFQH0yMDe8P2nP7YjdM_7PsQx8WoDcqO_9HFz-x__U_gIK16iP</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Aytug, Tolga</creator><creator>Rager, Matthew S</creator><creator>Higgins, Wesley</creator><creator>Brown, Forrest G</creator><creator>Veith, Gabriel M</creator><creator>Rouleau, Christopher M</creator><creator>Wang, Hui</creator><creator>Hood, Zachary D</creator><creator>Mahurin, Shannon M</creator><creator>Mayes, Richard T</creator><creator>Joshi, Pooran C</creator><creator>Kuruganti, Teja</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid><orcidid>https://orcid.org/0000-0002-7457-3261</orcidid><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0001-7971-5508</orcidid><orcidid>https://orcid.org/0000000337921631</orcidid><orcidid>https://orcid.org/0000000209417975</orcidid><orcidid>https://orcid.org/0000000257204392</orcidid><orcidid>https://orcid.org/0000000179715508</orcidid><orcidid>https://orcid.org/0000000258570378</orcidid><orcidid>https://orcid.org/0000000251864461</orcidid><orcidid>https://orcid.org/0000000274573261</orcidid><orcidid>https://orcid.org/0000000254883537</orcidid><orcidid>https://orcid.org/0000000337044026</orcidid></search><sort><creationdate>20180404</creationdate><title>Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors</title><author>Aytug, Tolga ; Rager, Matthew S ; Higgins, Wesley ; Brown, Forrest G ; Veith, Gabriel M ; Rouleau, Christopher M ; Wang, Hui ; Hood, Zachary D ; Mahurin, Shannon M ; Mayes, Richard T ; Joshi, Pooran C ; Kuruganti, Teja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-dbcf9b883358556fc81fc322aa4796322fed63007f9ce41a5577aabfcba9a4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>flexible electrode</topic><topic>graphene oxide</topic><topic>MATERIALS SCIENCE</topic><topic>optically transparent</topic><topic>supercapacitor</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aytug, Tolga</creatorcontrib><creatorcontrib>Rager, Matthew S</creatorcontrib><creatorcontrib>Higgins, Wesley</creatorcontrib><creatorcontrib>Brown, Forrest G</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Rouleau, Christopher M</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Hood, Zachary D</creatorcontrib><creatorcontrib>Mahurin, Shannon M</creatorcontrib><creatorcontrib>Mayes, Richard T</creatorcontrib><creatorcontrib>Joshi, Pooran C</creatorcontrib><creatorcontrib>Kuruganti, Teja</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aytug, Tolga</au><au>Rager, Matthew S</au><au>Higgins, Wesley</au><au>Brown, Forrest G</au><au>Veith, Gabriel M</au><au>Rouleau, Christopher M</au><au>Wang, Hui</au><au>Hood, Zachary D</au><au>Mahurin, Shannon M</au><au>Mayes, Richard T</au><au>Joshi, Pooran C</au><au>Kuruganti, Teja</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-04-04</date><risdate>2018</risdate><volume>10</volume><issue>13</issue><spage>11008</spage><epage>11017</epage><pages>11008-11017</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm–2) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29528215</pmid><doi>10.1021/acsami.8b01938</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid><orcidid>https://orcid.org/0000-0002-7457-3261</orcidid><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0001-7971-5508</orcidid><orcidid>https://orcid.org/0000000337921631</orcidid><orcidid>https://orcid.org/0000000209417975</orcidid><orcidid>https://orcid.org/0000000257204392</orcidid><orcidid>https://orcid.org/0000000179715508</orcidid><orcidid>https://orcid.org/0000000258570378</orcidid><orcidid>https://orcid.org/0000000251864461</orcidid><orcidid>https://orcid.org/0000000274573261</orcidid><orcidid>https://orcid.org/0000000254883537</orcidid><orcidid>https://orcid.org/0000000337044026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-04, Vol.10 (13), p.11008-11017 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1502607 |
source | American Chemical Society Journals |
subjects | flexible electrode graphene oxide MATERIALS SCIENCE optically transparent supercapacitor thin film |
title | Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum-Assisted%20Low-Temperature%20Synthesis%20of%20Reduced%20Graphene%20Oxide%20Thin-Film%20Electrodes%20for%20High-Performance%20Transparent%20and%20Flexible%20All-Solid-State%20Supercapacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Aytug,%20Tolga&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-04-04&rft.volume=10&rft.issue=13&rft.spage=11008&rft.epage=11017&rft.pages=11008-11017&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b01938&rft_dat=%3Cproquest_osti_%3E2013103541%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013103541&rft_id=info:pmid/29528215&rfr_iscdi=true |