Quantum optical microcombs

A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2019-03, Vol.13 (3), p.170-179
Hauptverfasser: Kues, Michael, Reimer, Christian, Lukens, Joseph M., Munro, William J., Weiner, Andrew M., Moss, David J., Morandotti, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 3
container_start_page 170
container_title Nature photonics
container_volume 13
creator Kues, Michael
Reimer, Christian
Lukens, Joseph M.
Munro, William J.
Weiner, Andrew M.
Moss, David J.
Morandotti, Roberto
description A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this goal, as they provide a very high number of temporal and frequency modes that can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy–time entangled optical frequency combs and discuss how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability. This Review describes quantum frequency combs that operate via photon entanglement, beginning with mode-locked quantum frequency combs followed by energy–time entanglement methods. The use of photonic integration and fibre-optic telecommunications components in enabling the quantum state control are also discussed.
doi_str_mv 10.1038/s41566-019-0363-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184516649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-45f17dbb6b51d74d218642929606753d20117b816416af42a28d2a8ba6b4aaac3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AD0teo5m8tXkKItfsCCCnkOSttpl29QkPfjvzVLRk5eZOTzvOzMvQudAroEwdZM4CCkxAY0JkwyTA7SAimvMlWaHv7MSx-gkpS0hgmlKF-jiZbJDnvpVGHPn7W7Vdz4GH3qXTtFRa3epOfvpS_R2f_e6fsSb54en9e0Ge6Zkxly0UNXOSSegrnhNQUlONdWSyEqwmhKAyimQHKRtObVU1dQqZ6Xj1lrPluhy9g0pdyb5Ljf-w4dhaHw2IAgVXBboaobGGD6nJmWzDVMcyl2mLOQCpOS6UDBT5YeUYtOaMXa9jV8GiNnnZOacTMnJ7HMqZYnorEmFHd6b-Of8v-gbDG5nmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184516649</pqid></control><display><type>article</type><title>Quantum optical microcombs</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kues, Michael ; Reimer, Christian ; Lukens, Joseph M. ; Munro, William J. ; Weiner, Andrew M. ; Moss, David J. ; Morandotti, Roberto</creator><creatorcontrib>Kues, Michael ; Reimer, Christian ; Lukens, Joseph M. ; Munro, William J. ; Weiner, Andrew M. ; Moss, David J. ; Morandotti, Roberto ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this goal, as they provide a very high number of temporal and frequency modes that can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy–time entangled optical frequency combs and discuss how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability. This Review describes quantum frequency combs that operate via photon entanglement, beginning with mode-locked quantum frequency combs followed by energy–time entanglement methods. The use of photonic integration and fibre-optic telecommunications components in enabling the quantum state control are also discussed.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-019-0363-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/1075/187 ; 639/624/1111/1112 ; 639/624/399/1099 ; 639/624/400/482 ; Applied and Technical Physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; Data processing ; ENGINEERING ; Fiber optics ; Information processing ; Optical fibers ; Optical frequency ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Review Article ; Signal processing ; Stability ; Telecommunications</subject><ispartof>Nature photonics, 2019-03, Vol.13 (3), p.170-179</ispartof><rights>Springer Nature Limited 2019</rights><rights>2019© Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-45f17dbb6b51d74d218642929606753d20117b816416af42a28d2a8ba6b4aaac3</citedby><cites>FETCH-LOGICAL-c386t-45f17dbb6b51d74d218642929606753d20117b816416af42a28d2a8ba6b4aaac3</cites><orcidid>0000-0003-1835-2250 ; 0000-0002-8038-7561 ; 0000-0001-5323-3850 ; 0000-0002-1334-8183 ; 0000-0001-7717-1519 ; 0000-0001-5195-1744 ; 0000-0001-9650-4462 ; 0000000153233850 ; 0000000318352250 ; 0000000213348183 ; 0000000196504462 ; 0000000151951744 ; 0000000280387561 ; 0000000177171519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-019-0363-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-019-0363-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1502546$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kues, Michael</creatorcontrib><creatorcontrib>Reimer, Christian</creatorcontrib><creatorcontrib>Lukens, Joseph M.</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Weiner, Andrew M.</creatorcontrib><creatorcontrib>Moss, David J.</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Quantum optical microcombs</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this goal, as they provide a very high number of temporal and frequency modes that can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy–time entangled optical frequency combs and discuss how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability. This Review describes quantum frequency combs that operate via photon entanglement, beginning with mode-locked quantum frequency combs followed by energy–time entanglement methods. The use of photonic integration and fibre-optic telecommunications components in enabling the quantum state control are also discussed.</description><subject>639/624/1075/1079</subject><subject>639/624/1075/187</subject><subject>639/624/1111/1112</subject><subject>639/624/399/1099</subject><subject>639/624/400/482</subject><subject>Applied and Technical Physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>ENGINEERING</subject><subject>Fiber optics</subject><subject>Information processing</subject><subject>Optical fibers</subject><subject>Optical frequency</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Review Article</subject><subject>Signal processing</subject><subject>Stability</subject><subject>Telecommunications</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AD0teo5m8tXkKItfsCCCnkOSttpl29QkPfjvzVLRk5eZOTzvOzMvQudAroEwdZM4CCkxAY0JkwyTA7SAimvMlWaHv7MSx-gkpS0hgmlKF-jiZbJDnvpVGHPn7W7Vdz4GH3qXTtFRa3epOfvpS_R2f_e6fsSb54en9e0Ge6Zkxly0UNXOSSegrnhNQUlONdWSyEqwmhKAyimQHKRtObVU1dQqZ6Xj1lrPluhy9g0pdyb5Ljf-w4dhaHw2IAgVXBboaobGGD6nJmWzDVMcyl2mLOQCpOS6UDBT5YeUYtOaMXa9jV8GiNnnZOacTMnJ7HMqZYnorEmFHd6b-Of8v-gbDG5nmg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Kues, Michael</creator><creator>Reimer, Christian</creator><creator>Lukens, Joseph M.</creator><creator>Munro, William J.</creator><creator>Weiner, Andrew M.</creator><creator>Moss, David J.</creator><creator>Morandotti, Roberto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1835-2250</orcidid><orcidid>https://orcid.org/0000-0002-8038-7561</orcidid><orcidid>https://orcid.org/0000-0001-5323-3850</orcidid><orcidid>https://orcid.org/0000-0002-1334-8183</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid><orcidid>https://orcid.org/0000-0001-5195-1744</orcidid><orcidid>https://orcid.org/0000-0001-9650-4462</orcidid><orcidid>https://orcid.org/0000000153233850</orcidid><orcidid>https://orcid.org/0000000318352250</orcidid><orcidid>https://orcid.org/0000000213348183</orcidid><orcidid>https://orcid.org/0000000196504462</orcidid><orcidid>https://orcid.org/0000000151951744</orcidid><orcidid>https://orcid.org/0000000280387561</orcidid><orcidid>https://orcid.org/0000000177171519</orcidid></search><sort><creationdate>20190301</creationdate><title>Quantum optical microcombs</title><author>Kues, Michael ; Reimer, Christian ; Lukens, Joseph M. ; Munro, William J. ; Weiner, Andrew M. ; Moss, David J. ; Morandotti, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-45f17dbb6b51d74d218642929606753d20117b816416af42a28d2a8ba6b4aaac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/1075/1079</topic><topic>639/624/1075/187</topic><topic>639/624/1111/1112</topic><topic>639/624/399/1099</topic><topic>639/624/400/482</topic><topic>Applied and Technical Physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>ENGINEERING</topic><topic>Fiber optics</topic><topic>Information processing</topic><topic>Optical fibers</topic><topic>Optical frequency</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Review Article</topic><topic>Signal processing</topic><topic>Stability</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kues, Michael</creatorcontrib><creatorcontrib>Reimer, Christian</creatorcontrib><creatorcontrib>Lukens, Joseph M.</creatorcontrib><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Weiner, Andrew M.</creatorcontrib><creatorcontrib>Moss, David J.</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kues, Michael</au><au>Reimer, Christian</au><au>Lukens, Joseph M.</au><au>Munro, William J.</au><au>Weiner, Andrew M.</au><au>Moss, David J.</au><au>Morandotti, Roberto</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum optical microcombs</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>170</spage><epage>179</epage><pages>170-179</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this goal, as they provide a very high number of temporal and frequency modes that can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy–time entangled optical frequency combs and discuss how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability. This Review describes quantum frequency combs that operate via photon entanglement, beginning with mode-locked quantum frequency combs followed by energy–time entanglement methods. The use of photonic integration and fibre-optic telecommunications components in enabling the quantum state control are also discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-019-0363-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1835-2250</orcidid><orcidid>https://orcid.org/0000-0002-8038-7561</orcidid><orcidid>https://orcid.org/0000-0001-5323-3850</orcidid><orcidid>https://orcid.org/0000-0002-1334-8183</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid><orcidid>https://orcid.org/0000-0001-5195-1744</orcidid><orcidid>https://orcid.org/0000-0001-9650-4462</orcidid><orcidid>https://orcid.org/0000000153233850</orcidid><orcidid>https://orcid.org/0000000318352250</orcidid><orcidid>https://orcid.org/0000000213348183</orcidid><orcidid>https://orcid.org/0000000196504462</orcidid><orcidid>https://orcid.org/0000000151951744</orcidid><orcidid>https://orcid.org/0000000280387561</orcidid><orcidid>https://orcid.org/0000000177171519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2019-03, Vol.13 (3), p.170-179
issn 1749-4885
1749-4893
language eng
recordid cdi_osti_scitechconnect_1502546
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/624/1075/1079
639/624/1075/187
639/624/1111/1112
639/624/399/1099
639/624/400/482
Applied and Technical Physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer simulation
Data processing
ENGINEERING
Fiber optics
Information processing
Optical fibers
Optical frequency
Photonics
Physics
Physics and Astronomy
Quantum Physics
Review Article
Signal processing
Stability
Telecommunications
title Quantum optical microcombs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20optical%20microcombs&rft.jtitle=Nature%20photonics&rft.au=Kues,%20Michael&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-03-01&rft.volume=13&rft.issue=3&rft.spage=170&rft.epage=179&rft.pages=170-179&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-019-0363-0&rft_dat=%3Cproquest_osti_%3E2184516649%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184516649&rft_id=info:pmid/&rfr_iscdi=true