Anomaly detection in scientific data using joint statistical moments

We propose an anomaly detection method for multi-variate scientific data based on analysis of high-order joint moments. Using kurtosis as a reliable measure of outliers, we suggest that principal kurtosis vectors, by analogy to principal component analysis (PCA) vectors, signify the principal direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-06, Vol.387, p.522-538
Hauptverfasser: Aditya, Konduri, Kolla, Hemanth, Kegelmeyer, W. Philip, Shead, Timothy M., Ling, Julia, Davis, Warren L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue
container_start_page 522
container_title Journal of computational physics
container_volume 387
creator Aditya, Konduri
Kolla, Hemanth
Kegelmeyer, W. Philip
Shead, Timothy M.
Ling, Julia
Davis, Warren L.
description We propose an anomaly detection method for multi-variate scientific data based on analysis of high-order joint moments. Using kurtosis as a reliable measure of outliers, we suggest that principal kurtosis vectors, by analogy to principal component analysis (PCA) vectors, signify the principal directions along which outliers appear. The inception of an anomaly, then, manifests as a change in the principal values and vectors of kurtosis. Obtaining the principal kurtosis vectors requires decomposing a fourth order joint cumulant tensor for which we use a simple, computationally less expensive approach that involves performing a singular value decomposition (SVD) over the matricized tensor. We demonstrate the efficacy of this approach on synthetic data, and develop an algorithm to identify the occurrence of a spatial and/or temporal anomalous event in scientific phenomena. The algorithm decomposes the data into several spatial sub-domains and time steps to identify regions with such events. Feature moment metrics, based on the alignments of the principal kurtosis vectors, are computed at each sub-domain and time step for all features to quantify their relative importance towards the overall kurtosis in the data. Accordingly, spatial and temporal anomaly metrics for each sub-domain are proposed using the Hellinger distance of the feature moment metric distribution from a suitable nominal distribution. We apply the algorithm to two turbulent auto-ignition combustion cases and demonstrate that the anomaly metrics reliably capture the occurrence of auto-ignition in relevant spatial sub-domains at the right time steps. •A novel unsupervised anomaly detection method for multi-scale, multi-variate data.•Hypothesis: anomalous events have a signature in the higher order joint moments.•Extends the concept of PCA to higher order moment, specifically kurtosis.•The method identifies principal vectors of kurtosis as directions of anomaly.•The algorithm is designed for distributed large-scale HPC simulations and data.
doi_str_mv 10.1016/j.jcp.2019.03.003
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911930172X</els_id><sourcerecordid>2230283936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-23c8131f4f81c6e225d241bd7cc4acf6727812dc23529bd098c2249a97034b103</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEuXxA9gimBPuvc7LYqrKU6rEArPlOg44au0Su0j99ziUmcnL-ezjw9gVQoGA9e1QDHpbEKAogBcA_IjNEATk1GB9zGYAhLkQAk_ZWQgDALRV2c7Y_dz5jVrvs85Eo6P1LrMuC9oaF21vddapqLJdsO4jG7x1MQtRRRui1WqdbfwmceGCnfRqHczl33nO3h8f3hbP-fL16WUxX-aaiyrmxHWLHPuyb1HXhqjqqMRV12hdKt3XDTUtUqeJVyRWHYhWE5VCiQZ4uULg5-z6cK9P78skmZQ_tXcumUusgMqqTtDNAdqO_mtnQpSD340ueUkiDtRywScKD5QefQij6eV2tBs17iWCnIrKQaaicioqgctUNG3uDhuT_vhtzSh_O2nT2XEy6Lz9Z_0DAzl8tQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230283936</pqid></control><display><type>article</type><title>Anomaly detection in scientific data using joint statistical moments</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Aditya, Konduri ; Kolla, Hemanth ; Kegelmeyer, W. Philip ; Shead, Timothy M. ; Ling, Julia ; Davis, Warren L.</creator><creatorcontrib>Aditya, Konduri ; Kolla, Hemanth ; Kegelmeyer, W. Philip ; Shead, Timothy M. ; Ling, Julia ; Davis, Warren L. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>We propose an anomaly detection method for multi-variate scientific data based on analysis of high-order joint moments. Using kurtosis as a reliable measure of outliers, we suggest that principal kurtosis vectors, by analogy to principal component analysis (PCA) vectors, signify the principal directions along which outliers appear. The inception of an anomaly, then, manifests as a change in the principal values and vectors of kurtosis. Obtaining the principal kurtosis vectors requires decomposing a fourth order joint cumulant tensor for which we use a simple, computationally less expensive approach that involves performing a singular value decomposition (SVD) over the matricized tensor. We demonstrate the efficacy of this approach on synthetic data, and develop an algorithm to identify the occurrence of a spatial and/or temporal anomalous event in scientific phenomena. The algorithm decomposes the data into several spatial sub-domains and time steps to identify regions with such events. Feature moment metrics, based on the alignments of the principal kurtosis vectors, are computed at each sub-domain and time step for all features to quantify their relative importance towards the overall kurtosis in the data. Accordingly, spatial and temporal anomaly metrics for each sub-domain are proposed using the Hellinger distance of the feature moment metric distribution from a suitable nominal distribution. We apply the algorithm to two turbulent auto-ignition combustion cases and demonstrate that the anomaly metrics reliably capture the occurrence of auto-ignition in relevant spatial sub-domains at the right time steps. •A novel unsupervised anomaly detection method for multi-scale, multi-variate data.•Hypothesis: anomalous events have a signature in the higher order joint moments.•Extends the concept of PCA to higher order moment, specifically kurtosis.•The method identifies principal vectors of kurtosis as directions of anomaly.•The algorithm is designed for distributed large-scale HPC simulations and data.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.03.003</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Auto-ignition ; Co-kurtosis ; Computational physics ; Data analysis ; Decomposition ; Domains ; Hellinger distance ; Ignition ; Kurtosis ; Mathematical analysis ; MATHEMATICS AND COMPUTING ; Outliers (statistics) ; Principal components analysis ; Scientific computing ; Singular value decomposition ; Spatial data ; Spontaneous combustion ; Tensor decomposition ; Tensors</subject><ispartof>Journal of computational physics, 2019-06, Vol.387, p.522-538</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-23c8131f4f81c6e225d241bd7cc4acf6727812dc23529bd098c2249a97034b103</citedby><cites>FETCH-LOGICAL-c395t-23c8131f4f81c6e225d241bd7cc4acf6727812dc23529bd098c2249a97034b103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2019.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1502456$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aditya, Konduri</creatorcontrib><creatorcontrib>Kolla, Hemanth</creatorcontrib><creatorcontrib>Kegelmeyer, W. Philip</creatorcontrib><creatorcontrib>Shead, Timothy M.</creatorcontrib><creatorcontrib>Ling, Julia</creatorcontrib><creatorcontrib>Davis, Warren L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Anomaly detection in scientific data using joint statistical moments</title><title>Journal of computational physics</title><description>We propose an anomaly detection method for multi-variate scientific data based on analysis of high-order joint moments. Using kurtosis as a reliable measure of outliers, we suggest that principal kurtosis vectors, by analogy to principal component analysis (PCA) vectors, signify the principal directions along which outliers appear. The inception of an anomaly, then, manifests as a change in the principal values and vectors of kurtosis. Obtaining the principal kurtosis vectors requires decomposing a fourth order joint cumulant tensor for which we use a simple, computationally less expensive approach that involves performing a singular value decomposition (SVD) over the matricized tensor. We demonstrate the efficacy of this approach on synthetic data, and develop an algorithm to identify the occurrence of a spatial and/or temporal anomalous event in scientific phenomena. The algorithm decomposes the data into several spatial sub-domains and time steps to identify regions with such events. Feature moment metrics, based on the alignments of the principal kurtosis vectors, are computed at each sub-domain and time step for all features to quantify their relative importance towards the overall kurtosis in the data. Accordingly, spatial and temporal anomaly metrics for each sub-domain are proposed using the Hellinger distance of the feature moment metric distribution from a suitable nominal distribution. We apply the algorithm to two turbulent auto-ignition combustion cases and demonstrate that the anomaly metrics reliably capture the occurrence of auto-ignition in relevant spatial sub-domains at the right time steps. •A novel unsupervised anomaly detection method for multi-scale, multi-variate data.•Hypothesis: anomalous events have a signature in the higher order joint moments.•Extends the concept of PCA to higher order moment, specifically kurtosis.•The method identifies principal vectors of kurtosis as directions of anomaly.•The algorithm is designed for distributed large-scale HPC simulations and data.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Auto-ignition</subject><subject>Co-kurtosis</subject><subject>Computational physics</subject><subject>Data analysis</subject><subject>Decomposition</subject><subject>Domains</subject><subject>Hellinger distance</subject><subject>Ignition</subject><subject>Kurtosis</subject><subject>Mathematical analysis</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Outliers (statistics)</subject><subject>Principal components analysis</subject><subject>Scientific computing</subject><subject>Singular value decomposition</subject><subject>Spatial data</subject><subject>Spontaneous combustion</subject><subject>Tensor decomposition</subject><subject>Tensors</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAURi0EEuXxA9gimBPuvc7LYqrKU6rEArPlOg44au0Su0j99ziUmcnL-ezjw9gVQoGA9e1QDHpbEKAogBcA_IjNEATk1GB9zGYAhLkQAk_ZWQgDALRV2c7Y_dz5jVrvs85Eo6P1LrMuC9oaF21vddapqLJdsO4jG7x1MQtRRRui1WqdbfwmceGCnfRqHczl33nO3h8f3hbP-fL16WUxX-aaiyrmxHWLHPuyb1HXhqjqqMRV12hdKt3XDTUtUqeJVyRWHYhWE5VCiQZ4uULg5-z6cK9P78skmZQ_tXcumUusgMqqTtDNAdqO_mtnQpSD340ueUkiDtRywScKD5QefQij6eV2tBs17iWCnIrKQaaicioqgctUNG3uDhuT_vhtzSh_O2nT2XEy6Lz9Z_0DAzl8tQ</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Aditya, Konduri</creator><creator>Kolla, Hemanth</creator><creator>Kegelmeyer, W. Philip</creator><creator>Shead, Timothy M.</creator><creator>Ling, Julia</creator><creator>Davis, Warren L.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20190615</creationdate><title>Anomaly detection in scientific data using joint statistical moments</title><author>Aditya, Konduri ; Kolla, Hemanth ; Kegelmeyer, W. Philip ; Shead, Timothy M. ; Ling, Julia ; Davis, Warren L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-23c8131f4f81c6e225d241bd7cc4acf6727812dc23529bd098c2249a97034b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Auto-ignition</topic><topic>Co-kurtosis</topic><topic>Computational physics</topic><topic>Data analysis</topic><topic>Decomposition</topic><topic>Domains</topic><topic>Hellinger distance</topic><topic>Ignition</topic><topic>Kurtosis</topic><topic>Mathematical analysis</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Outliers (statistics)</topic><topic>Principal components analysis</topic><topic>Scientific computing</topic><topic>Singular value decomposition</topic><topic>Spatial data</topic><topic>Spontaneous combustion</topic><topic>Tensor decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aditya, Konduri</creatorcontrib><creatorcontrib>Kolla, Hemanth</creatorcontrib><creatorcontrib>Kegelmeyer, W. Philip</creatorcontrib><creatorcontrib>Shead, Timothy M.</creatorcontrib><creatorcontrib>Ling, Julia</creatorcontrib><creatorcontrib>Davis, Warren L.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aditya, Konduri</au><au>Kolla, Hemanth</au><au>Kegelmeyer, W. Philip</au><au>Shead, Timothy M.</au><au>Ling, Julia</au><au>Davis, Warren L.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly detection in scientific data using joint statistical moments</atitle><jtitle>Journal of computational physics</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>387</volume><spage>522</spage><epage>538</epage><pages>522-538</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We propose an anomaly detection method for multi-variate scientific data based on analysis of high-order joint moments. Using kurtosis as a reliable measure of outliers, we suggest that principal kurtosis vectors, by analogy to principal component analysis (PCA) vectors, signify the principal directions along which outliers appear. The inception of an anomaly, then, manifests as a change in the principal values and vectors of kurtosis. Obtaining the principal kurtosis vectors requires decomposing a fourth order joint cumulant tensor for which we use a simple, computationally less expensive approach that involves performing a singular value decomposition (SVD) over the matricized tensor. We demonstrate the efficacy of this approach on synthetic data, and develop an algorithm to identify the occurrence of a spatial and/or temporal anomalous event in scientific phenomena. The algorithm decomposes the data into several spatial sub-domains and time steps to identify regions with such events. Feature moment metrics, based on the alignments of the principal kurtosis vectors, are computed at each sub-domain and time step for all features to quantify their relative importance towards the overall kurtosis in the data. Accordingly, spatial and temporal anomaly metrics for each sub-domain are proposed using the Hellinger distance of the feature moment metric distribution from a suitable nominal distribution. We apply the algorithm to two turbulent auto-ignition combustion cases and demonstrate that the anomaly metrics reliably capture the occurrence of auto-ignition in relevant spatial sub-domains at the right time steps. •A novel unsupervised anomaly detection method for multi-scale, multi-variate data.•Hypothesis: anomalous events have a signature in the higher order joint moments.•Extends the concept of PCA to higher order moment, specifically kurtosis.•The method identifies principal vectors of kurtosis as directions of anomaly.•The algorithm is designed for distributed large-scale HPC simulations and data.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.03.003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2019-06, Vol.387, p.522-538
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1502456
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Anomalies
Anomaly detection
Auto-ignition
Co-kurtosis
Computational physics
Data analysis
Decomposition
Domains
Hellinger distance
Ignition
Kurtosis
Mathematical analysis
MATHEMATICS AND COMPUTING
Outliers (statistics)
Principal components analysis
Scientific computing
Singular value decomposition
Spatial data
Spontaneous combustion
Tensor decomposition
Tensors
title Anomaly detection in scientific data using joint statistical moments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20detection%20in%20scientific%20data%20using%20joint%20statistical%20moments&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Aditya,%20Konduri&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2019-06-15&rft.volume=387&rft.spage=522&rft.epage=538&rft.pages=522-538&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.03.003&rft_dat=%3Cproquest_osti_%3E2230283936%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230283936&rft_id=info:pmid/&rft_els_id=S002199911930172X&rfr_iscdi=true