Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory
The attribution of quantum beats observed in the time-resolved spectroscopy of photosynthetic light-harvesting antennae to nontrivial quantum coherences has sparked a flurry of research activity beginning a decade ago. Even though investigations into the functional aspects of photosynthetic light-ha...
Gespeichert in:
Veröffentlicht in: | Journal of photochemistry and photobiology. B, Biology Biology, 2019-01, Vol.190 (C), p.110-117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | C |
container_start_page | 110 |
container_title | Journal of photochemistry and photobiology. B, Biology |
container_volume | 190 |
creator | Toa, Zi S.D. Dean, Jacob C. Scholes, Gregory D. |
description | The attribution of quantum beats observed in the time-resolved spectroscopy of photosynthetic light-harvesting antennae to nontrivial quantum coherences has sparked a flurry of research activity beginning a decade ago. Even though investigations into the functional aspects of photosynthetic light-harvesting were supported by X-ray crystal structures, the non-covalent interactions between pigments and their local protein environment that drive such function has yet to be comprehensively explored. Using symmetry-adapted perturbation theory (SAPT), we have comprehensively determined the magnitude and compositions of these non-covalent interactions involving light-harvesting chromophores in two quintessential photosynthetic pigment-protein complexes — peridinin chlorophyll-a protein (PCP) from dinoflagellate Amphidinium carterae and phycocyanin 645 (PC645) from cryptophyte Chroomonas mesostigmatica. In PCP, the chlorophylls are dispersion-bound to the peridinins, which in turn are electrostatically anchored to the protein scaffold via their polar terminal rings. This might be an evolutionary design principle in which the relative orientation of the carotenoids towards the aqueous environment determines the arrangement of the other chromophores in carotenoid-based antennas. On the other hand, electrostatics dominate the non-covalent interactions in PC645. Our ab initio simulations also suggest full protonation of the PC645 chromophores in physiological conditions, and that changes to their protonation states result in their participation as switches between folded and unfolded conformations.
[Display omitted]
•Composition of non-covalent interactions in photosynthetic antenna elucidated•Chlorophyll is dispersion-bound to peridinin in peridinin chlorophyll-a protein•Peridinin is bound electrostatically to the protein scaffold via its terminal rings•Bilins in phycocyanin 645 possess electrostatics-dominated interactions•Increasingly protonated bilins can change interactions from attractive to repulsive |
doi_str_mv | 10.1016/j.jphotobiol.2018.11.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1502097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1011134418309874</els_id><sourcerecordid>2149848713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-f388b06ebc0a3137dd11c147245f629cfef4ab73d0116946e7d26ba3f2bb2bab3</originalsourceid><addsrcrecordid>eNqFkU-P1SAUxRujcf7oVzCNbtz0yYW2tEud6GgyiYnRNQF6-0pDSwXazFv51aW-URM3soGE3z2Hw8myHMgBCNRvxsO4DC46ZZw9UALNAeBACH-UXULDWUHrhj5OZwJQACvLi-wqhJGkVdX8aXbBSEUaXrWX2Y8vuKG0Zj7mIfpVx9VLm5t5c3bDCeeYuz7Xg3eTS44eQ7rLpT0myJrjEPNB-g1D3AW0mxaL94lZwy_B0zRh9KdCdnKJ2OUL-qSvZDRuzuOAzp-eZU96aQM-f9ivs28f3n-9-Vjcfb79dPP2rtBVWcWiZ02jSI1KE8mA8a4D0FByWlZ9TVvdY19KxVmXEtdtWSPvaK0k66lSVEnFrrOXZ12X3iqCNhH1oN08o44CKkJJyxP0-gwt3n1fUyoxmaDRWjmjW4OgULZN2XBgCX31Dzq61c8pQqI4AK-rtkxUc6a0dyF47MXizST9SQARe5NiFH-bFHuTAkCkJtPoiweDVU3Y_Rn8XV0C3p0BTN-2GfR7Kpw1dsbvoTpn_u_yEx8MuBc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171176594</pqid></control><display><type>article</type><title>Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Toa, Zi S.D. ; Dean, Jacob C. ; Scholes, Gregory D.</creator><creatorcontrib>Toa, Zi S.D. ; Dean, Jacob C. ; Scholes, Gregory D. ; Princeton Univ., NJ (United States) ; Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</creatorcontrib><description>The attribution of quantum beats observed in the time-resolved spectroscopy of photosynthetic light-harvesting antennae to nontrivial quantum coherences has sparked a flurry of research activity beginning a decade ago. Even though investigations into the functional aspects of photosynthetic light-harvesting were supported by X-ray crystal structures, the non-covalent interactions between pigments and their local protein environment that drive such function has yet to be comprehensively explored. Using symmetry-adapted perturbation theory (SAPT), we have comprehensively determined the magnitude and compositions of these non-covalent interactions involving light-harvesting chromophores in two quintessential photosynthetic pigment-protein complexes — peridinin chlorophyll-a protein (PCP) from dinoflagellate Amphidinium carterae and phycocyanin 645 (PC645) from cryptophyte Chroomonas mesostigmatica. In PCP, the chlorophylls are dispersion-bound to the peridinins, which in turn are electrostatically anchored to the protein scaffold via their polar terminal rings. This might be an evolutionary design principle in which the relative orientation of the carotenoids towards the aqueous environment determines the arrangement of the other chromophores in carotenoid-based antennas. On the other hand, electrostatics dominate the non-covalent interactions in PC645. Our ab initio simulations also suggest full protonation of the PC645 chromophores in physiological conditions, and that changes to their protonation states result in their participation as switches between folded and unfolded conformations.
[Display omitted]
•Composition of non-covalent interactions in photosynthetic antenna elucidated•Chlorophyll is dispersion-bound to peridinin in peridinin chlorophyll-a protein•Peridinin is bound electrostatically to the protein scaffold via its terminal rings•Bilins in phycocyanin 645 possess electrostatics-dominated interactions•Increasingly protonated bilins can change interactions from attractive to repulsive</description><identifier>ISSN: 1011-1344</identifier><identifier>EISSN: 1873-2682</identifier><identifier>DOI: 10.1016/j.jphotobiol.2018.11.007</identifier><identifier>PMID: 30508759</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Algae ; Algae harvesting ; Antennae ; Aqueous environments ; BASIC BIOLOGICAL SCIENCES ; Carotenoids ; Chlorophyll ; Chromophores ; Covalence ; Crystal structure ; Electrostatic properties ; Electrostatics ; Perturbation theory ; Photosynthesis ; Phycocyanin ; Pigments ; Proteins ; Protonation ; Quantum physics ; Spectroscopy ; Spectrum analysis ; Switches ; Symmetry</subject><ispartof>Journal of photochemistry and photobiology. B, Biology, 2019-01, Vol.190 (C), p.110-117</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-f388b06ebc0a3137dd11c147245f629cfef4ab73d0116946e7d26ba3f2bb2bab3</citedby><cites>FETCH-LOGICAL-c545t-f388b06ebc0a3137dd11c147245f629cfef4ab73d0116946e7d26ba3f2bb2bab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jphotobiol.2018.11.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30508759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1502097$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Toa, Zi S.D.</creatorcontrib><creatorcontrib>Dean, Jacob C.</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</creatorcontrib><title>Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory</title><title>Journal of photochemistry and photobiology. B, Biology</title><addtitle>J Photochem Photobiol B</addtitle><description>The attribution of quantum beats observed in the time-resolved spectroscopy of photosynthetic light-harvesting antennae to nontrivial quantum coherences has sparked a flurry of research activity beginning a decade ago. Even though investigations into the functional aspects of photosynthetic light-harvesting were supported by X-ray crystal structures, the non-covalent interactions between pigments and their local protein environment that drive such function has yet to be comprehensively explored. Using symmetry-adapted perturbation theory (SAPT), we have comprehensively determined the magnitude and compositions of these non-covalent interactions involving light-harvesting chromophores in two quintessential photosynthetic pigment-protein complexes — peridinin chlorophyll-a protein (PCP) from dinoflagellate Amphidinium carterae and phycocyanin 645 (PC645) from cryptophyte Chroomonas mesostigmatica. In PCP, the chlorophylls are dispersion-bound to the peridinins, which in turn are electrostatically anchored to the protein scaffold via their polar terminal rings. This might be an evolutionary design principle in which the relative orientation of the carotenoids towards the aqueous environment determines the arrangement of the other chromophores in carotenoid-based antennas. On the other hand, electrostatics dominate the non-covalent interactions in PC645. Our ab initio simulations also suggest full protonation of the PC645 chromophores in physiological conditions, and that changes to their protonation states result in their participation as switches between folded and unfolded conformations.
[Display omitted]
•Composition of non-covalent interactions in photosynthetic antenna elucidated•Chlorophyll is dispersion-bound to peridinin in peridinin chlorophyll-a protein•Peridinin is bound electrostatically to the protein scaffold via its terminal rings•Bilins in phycocyanin 645 possess electrostatics-dominated interactions•Increasingly protonated bilins can change interactions from attractive to repulsive</description><subject>Algae</subject><subject>Algae harvesting</subject><subject>Antennae</subject><subject>Aqueous environments</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Carotenoids</subject><subject>Chlorophyll</subject><subject>Chromophores</subject><subject>Covalence</subject><subject>Crystal structure</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Perturbation theory</subject><subject>Photosynthesis</subject><subject>Phycocyanin</subject><subject>Pigments</subject><subject>Proteins</subject><subject>Protonation</subject><subject>Quantum physics</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Switches</subject><subject>Symmetry</subject><issn>1011-1344</issn><issn>1873-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU-P1SAUxRujcf7oVzCNbtz0yYW2tEud6GgyiYnRNQF6-0pDSwXazFv51aW-URM3soGE3z2Hw8myHMgBCNRvxsO4DC46ZZw9UALNAeBACH-UXULDWUHrhj5OZwJQACvLi-wqhJGkVdX8aXbBSEUaXrWX2Y8vuKG0Zj7mIfpVx9VLm5t5c3bDCeeYuz7Xg3eTS44eQ7rLpT0myJrjEPNB-g1D3AW0mxaL94lZwy_B0zRh9KdCdnKJ2OUL-qSvZDRuzuOAzp-eZU96aQM-f9ivs28f3n-9-Vjcfb79dPP2rtBVWcWiZ02jSI1KE8mA8a4D0FByWlZ9TVvdY19KxVmXEtdtWSPvaK0k66lSVEnFrrOXZ12X3iqCNhH1oN08o44CKkJJyxP0-gwt3n1fUyoxmaDRWjmjW4OgULZN2XBgCX31Dzq61c8pQqI4AK-rtkxUc6a0dyF47MXizST9SQARe5NiFH-bFHuTAkCkJtPoiweDVU3Y_Rn8XV0C3p0BTN-2GfR7Kpw1dsbvoTpn_u_yEx8MuBc</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Toa, Zi S.D.</creator><creator>Dean, Jacob C.</creator><creator>Scholes, Gregory D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190101</creationdate><title>Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory</title><author>Toa, Zi S.D. ; Dean, Jacob C. ; Scholes, Gregory D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-f388b06ebc0a3137dd11c147245f629cfef4ab73d0116946e7d26ba3f2bb2bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algae</topic><topic>Algae harvesting</topic><topic>Antennae</topic><topic>Aqueous environments</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Carotenoids</topic><topic>Chlorophyll</topic><topic>Chromophores</topic><topic>Covalence</topic><topic>Crystal structure</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Perturbation theory</topic><topic>Photosynthesis</topic><topic>Phycocyanin</topic><topic>Pigments</topic><topic>Proteins</topic><topic>Protonation</topic><topic>Quantum physics</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Switches</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toa, Zi S.D.</creatorcontrib><creatorcontrib>Dean, Jacob C.</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toa, Zi S.D.</au><au>Dean, Jacob C.</au><au>Scholes, Gregory D.</au><aucorp>Princeton Univ., NJ (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Bioinspired Light-Escalated Chemistry (BioLEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory</atitle><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle><addtitle>J Photochem Photobiol B</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>190</volume><issue>C</issue><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>1011-1344</issn><eissn>1873-2682</eissn><abstract>The attribution of quantum beats observed in the time-resolved spectroscopy of photosynthetic light-harvesting antennae to nontrivial quantum coherences has sparked a flurry of research activity beginning a decade ago. Even though investigations into the functional aspects of photosynthetic light-harvesting were supported by X-ray crystal structures, the non-covalent interactions between pigments and their local protein environment that drive such function has yet to be comprehensively explored. Using symmetry-adapted perturbation theory (SAPT), we have comprehensively determined the magnitude and compositions of these non-covalent interactions involving light-harvesting chromophores in two quintessential photosynthetic pigment-protein complexes — peridinin chlorophyll-a protein (PCP) from dinoflagellate Amphidinium carterae and phycocyanin 645 (PC645) from cryptophyte Chroomonas mesostigmatica. In PCP, the chlorophylls are dispersion-bound to the peridinins, which in turn are electrostatically anchored to the protein scaffold via their polar terminal rings. This might be an evolutionary design principle in which the relative orientation of the carotenoids towards the aqueous environment determines the arrangement of the other chromophores in carotenoid-based antennas. On the other hand, electrostatics dominate the non-covalent interactions in PC645. Our ab initio simulations also suggest full protonation of the PC645 chromophores in physiological conditions, and that changes to their protonation states result in their participation as switches between folded and unfolded conformations.
[Display omitted]
•Composition of non-covalent interactions in photosynthetic antenna elucidated•Chlorophyll is dispersion-bound to peridinin in peridinin chlorophyll-a protein•Peridinin is bound electrostatically to the protein scaffold via its terminal rings•Bilins in phycocyanin 645 possess electrostatics-dominated interactions•Increasingly protonated bilins can change interactions from attractive to repulsive</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>30508759</pmid><doi>10.1016/j.jphotobiol.2018.11.007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-1344 |
ispartof | Journal of photochemistry and photobiology. B, Biology, 2019-01, Vol.190 (C), p.110-117 |
issn | 1011-1344 1873-2682 |
language | eng |
recordid | cdi_osti_scitechconnect_1502097 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algae Algae harvesting Antennae Aqueous environments BASIC BIOLOGICAL SCIENCES Carotenoids Chlorophyll Chromophores Covalence Crystal structure Electrostatic properties Electrostatics Perturbation theory Photosynthesis Phycocyanin Pigments Proteins Protonation Quantum physics Spectroscopy Spectrum analysis Switches Symmetry |
title | Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20structural%20involvement%20of%20chromophores%20in%20algal%20light%20harvesting%20complexes%20using%20symmetry-adapted%20perturbation%20theory&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20B,%20Biology&rft.au=Toa,%20Zi%20S.D.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2019-01-01&rft.volume=190&rft.issue=C&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=1011-1344&rft.eissn=1873-2682&rft_id=info:doi/10.1016/j.jphotobiol.2018.11.007&rft_dat=%3Cproquest_osti_%3E2149848713%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2171176594&rft_id=info:pmid/30508759&rft_els_id=S1011134418309874&rfr_iscdi=true |