Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota

Summary Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology reports 2019-04, Vol.11 (2), p.262-270
Hauptverfasser: St. John, Emily, Flores, Gilberto E., Meneghin, Jennifer, Reysenbach, Anna‐Louise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 2
container_start_page 262
container_title Environmental microbiology reports
container_volume 11
creator St. John, Emily
Flores, Gilberto E.
Meneghin, Jennifer
Reysenbach, Anna‐Louise
description Summary Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP.
doi_str_mv 10.1111/1758-2229.12740
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1501747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011111758222912740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</originalsourceid><addsrcrecordid>eNqFkctOJCEUhslkzHR7WbszZGYzm1agLhRL4zhOJ1427gkFp7owVUULlKZ3PoLP6JNIT6kxsxkScsjJxw8nH0KHlBzTtE4oL6oFY0wcU8Zz8gXNPzpfP51naDeEO0LKXBD2Dc0ywsuKl2SO7C-A9cvTcwCF243xLrbge9XhBxgi7iGqFQyuh4SoEKCvOzB4agW89u7BGsB2CHbVxlSjwykAr9tNN_b4Wg1Oed0qcFHto51GdQEO3uoeuv19fnv2Z3F5c7E8O71c6DwnZMGypi6NaYgWNaGNUE1dQdVQk_4rNHDRcJp2JpQpal0aVRVMVbkwrObc0GwPfZ9iXYhWBm0j6Fa7YQAdJS0I5TlP0M8JShPcjxCi7G3Q0HVqADcGyajIacEpFwn98Q9650Y_pAlkRgRjpeDV9tWTidLeheChkWtve-U3khK5NSW3LuTWhfxrKt04essd6x7MB_-uJgHlBDzaDjb_y5PnV8t8Sn4Fp4-gjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092269781</pqid></control><display><type>article</type><title>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>St. John, Emily ; Flores, Gilberto E. ; Meneghin, Jennifer ; Reysenbach, Anna‐Louise</creator><creatorcontrib>St. John, Emily ; Flores, Gilberto E. ; Meneghin, Jennifer ; Reysenbach, Anna‐Louise</creatorcontrib><description>Summary Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP.</description><identifier>ISSN: 1758-2229</identifier><identifier>EISSN: 1758-2229</identifier><identifier>DOI: 10.1111/1758-2229.12740</identifier><identifier>PMID: 30768760</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Amino acids ; CRISPR ; Flagella ; Genes ; Genomes ; Genomics ; Gluconeogenesis ; Glycolysis ; Hydrothermal vents ; Nanoarchaeota ; Pentose ; Phylogenetics ; Proteins ; RNA polymerase ; Transfer RNA</subject><ispartof>Environmental microbiology reports, 2019-04, Vol.11 (2), p.262-270</ispartof><rights>2019 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2019 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright John Wiley &amp; Sons, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</citedby><cites>FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</cites><orcidid>0000-0001-9130-7750 ; 0000000191307750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1758-2229.12740$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1758-2229.12740$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30768760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1501747$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>St. John, Emily</creatorcontrib><creatorcontrib>Flores, Gilberto E.</creatorcontrib><creatorcontrib>Meneghin, Jennifer</creatorcontrib><creatorcontrib>Reysenbach, Anna‐Louise</creatorcontrib><title>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</title><title>Environmental microbiology reports</title><addtitle>Environ Microbiol Rep</addtitle><description>Summary Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP.</description><subject>Amino acids</subject><subject>CRISPR</subject><subject>Flagella</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Gluconeogenesis</subject><subject>Glycolysis</subject><subject>Hydrothermal vents</subject><subject>Nanoarchaeota</subject><subject>Pentose</subject><subject>Phylogenetics</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Transfer RNA</subject><issn>1758-2229</issn><issn>1758-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctOJCEUhslkzHR7WbszZGYzm1agLhRL4zhOJ1427gkFp7owVUULlKZ3PoLP6JNIT6kxsxkScsjJxw8nH0KHlBzTtE4oL6oFY0wcU8Zz8gXNPzpfP51naDeEO0LKXBD2Dc0ywsuKl2SO7C-A9cvTcwCF243xLrbge9XhBxgi7iGqFQyuh4SoEKCvOzB4agW89u7BGsB2CHbVxlSjwykAr9tNN_b4Wg1Oed0qcFHto51GdQEO3uoeuv19fnv2Z3F5c7E8O71c6DwnZMGypi6NaYgWNaGNUE1dQdVQk_4rNHDRcJp2JpQpal0aVRVMVbkwrObc0GwPfZ9iXYhWBm0j6Fa7YQAdJS0I5TlP0M8JShPcjxCi7G3Q0HVqADcGyajIacEpFwn98Q9650Y_pAlkRgRjpeDV9tWTidLeheChkWtve-U3khK5NSW3LuTWhfxrKt04essd6x7MB_-uJgHlBDzaDjb_y5PnV8t8Sn4Fp4-gjQ</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>St. John, Emily</creator><creator>Flores, Gilberto E.</creator><creator>Meneghin, Jennifer</creator><creator>Reysenbach, Anna‐Louise</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9130-7750</orcidid><orcidid>https://orcid.org/0000000191307750</orcidid></search><sort><creationdate>201904</creationdate><title>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</title><author>St. John, Emily ; Flores, Gilberto E. ; Meneghin, Jennifer ; Reysenbach, Anna‐Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>CRISPR</topic><topic>Flagella</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Gluconeogenesis</topic><topic>Glycolysis</topic><topic>Hydrothermal vents</topic><topic>Nanoarchaeota</topic><topic>Pentose</topic><topic>Phylogenetics</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>St. John, Emily</creatorcontrib><creatorcontrib>Flores, Gilberto E.</creatorcontrib><creatorcontrib>Meneghin, Jennifer</creatorcontrib><creatorcontrib>Reysenbach, Anna‐Louise</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental microbiology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>St. John, Emily</au><au>Flores, Gilberto E.</au><au>Meneghin, Jennifer</au><au>Reysenbach, Anna‐Louise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</atitle><jtitle>Environmental microbiology reports</jtitle><addtitle>Environ Microbiol Rep</addtitle><date>2019-04</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>262</spage><epage>270</epage><pages>262-270</pages><issn>1758-2229</issn><eissn>1758-2229</eissn><abstract>Summary Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30768760</pmid><doi>10.1111/1758-2229.12740</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9130-7750</orcidid><orcidid>https://orcid.org/0000000191307750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-2229
ispartof Environmental microbiology reports, 2019-04, Vol.11 (2), p.262-270
issn 1758-2229
1758-2229
language eng
recordid cdi_osti_scitechconnect_1501747
source Wiley Online Library Journals Frontfile Complete
subjects Amino acids
CRISPR
Flagella
Genes
Genomes
Genomics
Gluconeogenesis
Glycolysis
Hydrothermal vents
Nanoarchaeota
Pentose
Phylogenetics
Proteins
RNA polymerase
Transfer RNA
title Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%E2%80%90sea%20hydrothermal%20vent%20metagenome%E2%80%90assembled%20genomes%20provide%20insight%20into%20the%20phylum%20Nanoarchaeota&rft.jtitle=Environmental%20microbiology%20reports&rft.au=St.%20John,%20Emily&rft.date=2019-04&rft.volume=11&rft.issue=2&rft.spage=262&rft.epage=270&rft.pages=262-270&rft.issn=1758-2229&rft.eissn=1758-2229&rft_id=info:doi/10.1111/1758-2229.12740&rft_dat=%3Cproquest_osti_%3E1011111758222912740%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092269781&rft_id=info:pmid/30768760&rfr_iscdi=true