Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota
Summary Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described f...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology reports 2019-04, Vol.11 (2), p.262-270 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 2 |
container_start_page | 262 |
container_title | Environmental microbiology reports |
container_volume | 11 |
creator | St. John, Emily Flores, Gilberto E. Meneghin, Jennifer Reysenbach, Anna‐Louise |
description | Summary
Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP. |
doi_str_mv | 10.1111/1758-2229.12740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1501747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011111758222912740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</originalsourceid><addsrcrecordid>eNqFkctOJCEUhslkzHR7WbszZGYzm1agLhRL4zhOJ1427gkFp7owVUULlKZ3PoLP6JNIT6kxsxkScsjJxw8nH0KHlBzTtE4oL6oFY0wcU8Zz8gXNPzpfP51naDeEO0LKXBD2Dc0ywsuKl2SO7C-A9cvTcwCF243xLrbge9XhBxgi7iGqFQyuh4SoEKCvOzB4agW89u7BGsB2CHbVxlSjwykAr9tNN_b4Wg1Oed0qcFHto51GdQEO3uoeuv19fnv2Z3F5c7E8O71c6DwnZMGypi6NaYgWNaGNUE1dQdVQk_4rNHDRcJp2JpQpal0aVRVMVbkwrObc0GwPfZ9iXYhWBm0j6Fa7YQAdJS0I5TlP0M8JShPcjxCi7G3Q0HVqADcGyajIacEpFwn98Q9650Y_pAlkRgRjpeDV9tWTidLeheChkWtve-U3khK5NSW3LuTWhfxrKt04essd6x7MB_-uJgHlBDzaDjb_y5PnV8t8Sn4Fp4-gjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092269781</pqid></control><display><type>article</type><title>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>St. John, Emily ; Flores, Gilberto E. ; Meneghin, Jennifer ; Reysenbach, Anna‐Louise</creator><creatorcontrib>St. John, Emily ; Flores, Gilberto E. ; Meneghin, Jennifer ; Reysenbach, Anna‐Louise</creatorcontrib><description>Summary
Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP.</description><identifier>ISSN: 1758-2229</identifier><identifier>EISSN: 1758-2229</identifier><identifier>DOI: 10.1111/1758-2229.12740</identifier><identifier>PMID: 30768760</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Amino acids ; CRISPR ; Flagella ; Genes ; Genomes ; Genomics ; Gluconeogenesis ; Glycolysis ; Hydrothermal vents ; Nanoarchaeota ; Pentose ; Phylogenetics ; Proteins ; RNA polymerase ; Transfer RNA</subject><ispartof>Environmental microbiology reports, 2019-04, Vol.11 (2), p.262-270</ispartof><rights>2019 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><rights>2019 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>Copyright John Wiley & Sons, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</citedby><cites>FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</cites><orcidid>0000-0001-9130-7750 ; 0000000191307750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1758-2229.12740$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1758-2229.12740$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30768760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1501747$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>St. John, Emily</creatorcontrib><creatorcontrib>Flores, Gilberto E.</creatorcontrib><creatorcontrib>Meneghin, Jennifer</creatorcontrib><creatorcontrib>Reysenbach, Anna‐Louise</creatorcontrib><title>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</title><title>Environmental microbiology reports</title><addtitle>Environ Microbiol Rep</addtitle><description>Summary
Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP.</description><subject>Amino acids</subject><subject>CRISPR</subject><subject>Flagella</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Gluconeogenesis</subject><subject>Glycolysis</subject><subject>Hydrothermal vents</subject><subject>Nanoarchaeota</subject><subject>Pentose</subject><subject>Phylogenetics</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Transfer RNA</subject><issn>1758-2229</issn><issn>1758-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctOJCEUhslkzHR7WbszZGYzm1agLhRL4zhOJ1427gkFp7owVUULlKZ3PoLP6JNIT6kxsxkScsjJxw8nH0KHlBzTtE4oL6oFY0wcU8Zz8gXNPzpfP51naDeEO0LKXBD2Dc0ywsuKl2SO7C-A9cvTcwCF243xLrbge9XhBxgi7iGqFQyuh4SoEKCvOzB4agW89u7BGsB2CHbVxlSjwykAr9tNN_b4Wg1Oed0qcFHto51GdQEO3uoeuv19fnv2Z3F5c7E8O71c6DwnZMGypi6NaYgWNaGNUE1dQdVQk_4rNHDRcJp2JpQpal0aVRVMVbkwrObc0GwPfZ9iXYhWBm0j6Fa7YQAdJS0I5TlP0M8JShPcjxCi7G3Q0HVqADcGyajIacEpFwn98Q9650Y_pAlkRgRjpeDV9tWTidLeheChkWtve-U3khK5NSW3LuTWhfxrKt04essd6x7MB_-uJgHlBDzaDjb_y5PnV8t8Sn4Fp4-gjQ</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>St. John, Emily</creator><creator>Flores, Gilberto E.</creator><creator>Meneghin, Jennifer</creator><creator>Reysenbach, Anna‐Louise</creator><general>John Wiley & Sons, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9130-7750</orcidid><orcidid>https://orcid.org/0000000191307750</orcidid></search><sort><creationdate>201904</creationdate><title>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</title><author>St. John, Emily ; Flores, Gilberto E. ; Meneghin, Jennifer ; Reysenbach, Anna‐Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4400-23fb6ddf0c9b01f9afb8e8f1d8769ce79f719f739ad5bc6da852a849d2b77d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>CRISPR</topic><topic>Flagella</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Gluconeogenesis</topic><topic>Glycolysis</topic><topic>Hydrothermal vents</topic><topic>Nanoarchaeota</topic><topic>Pentose</topic><topic>Phylogenetics</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>St. John, Emily</creatorcontrib><creatorcontrib>Flores, Gilberto E.</creatorcontrib><creatorcontrib>Meneghin, Jennifer</creatorcontrib><creatorcontrib>Reysenbach, Anna‐Louise</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental microbiology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>St. John, Emily</au><au>Flores, Gilberto E.</au><au>Meneghin, Jennifer</au><au>Reysenbach, Anna‐Louise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota</atitle><jtitle>Environmental microbiology reports</jtitle><addtitle>Environ Microbiol Rep</addtitle><date>2019-04</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>262</spage><epage>270</epage><pages>262-270</pages><issn>1758-2229</issn><eissn>1758-2229</eissn><abstract>Summary
Ectosymbiotic Nanoarchaeota live on the surface of diverse archaeal hosts. Despite being broadly distributed in global geothermal systems, only three Nanoarchaeota have been successfully co‐cultivated with their hosts, and until now no nanoarchaeotal cultures or genomes have been described from deep‐sea hydrothermal vents. We recovered three nanoarchaeotal metagenome‐assembled genomes (MAGs) from deep‐sea hydrothermal vent sites at the Eastern Lau Spreading Center (M10‐121), Guaymas Basin (Gua‐46) and the Mid‐Cayman Rise (MC‐1). Based on average amino acid identity analysis, M10‐121 is a novel species in the candidate genus Nanoclepta, while the other two MAGs represent novel genera in the Nanoarchaeota. Like previously sequenced Nanoarchaeota, each MAG encodes at least one split protein‐coding gene. The MAGs also contain a mosaic of key nanoarchaeotal features, including CRISPR repeat regions and marker genes for gluconeogenesis and archaeal flagella. MC‐1 also encodes the pentose bisphosphate pathway, which may allow the nanoarchaeote to bypass several steps in glycolysis and produce ATP.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30768760</pmid><doi>10.1111/1758-2229.12740</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9130-7750</orcidid><orcidid>https://orcid.org/0000000191307750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-2229 |
ispartof | Environmental microbiology reports, 2019-04, Vol.11 (2), p.262-270 |
issn | 1758-2229 1758-2229 |
language | eng |
recordid | cdi_osti_scitechconnect_1501747 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Amino acids CRISPR Flagella Genes Genomes Genomics Gluconeogenesis Glycolysis Hydrothermal vents Nanoarchaeota Pentose Phylogenetics Proteins RNA polymerase Transfer RNA |
title | Deep‐sea hydrothermal vent metagenome‐assembled genomes provide insight into the phylum Nanoarchaeota |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%E2%80%90sea%20hydrothermal%20vent%20metagenome%E2%80%90assembled%20genomes%20provide%20insight%20into%20the%20phylum%20Nanoarchaeota&rft.jtitle=Environmental%20microbiology%20reports&rft.au=St.%20John,%20Emily&rft.date=2019-04&rft.volume=11&rft.issue=2&rft.spage=262&rft.epage=270&rft.pages=262-270&rft.issn=1758-2229&rft.eissn=1758-2229&rft_id=info:doi/10.1111/1758-2229.12740&rft_dat=%3Cproquest_osti_%3E1011111758222912740%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092269781&rft_id=info:pmid/30768760&rfr_iscdi=true |