A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation
A new diffraction technique for combined angle‐ and energy‐dispersive structural analysis and refinement (CAESAR), by collecting angle‐dispersive data using a solid‐state detector (SSD) and white synchrotron radiation, is introduced. By step scanning a well calibrated SSD over a limited 2θ range, a...
Gespeichert in:
Veröffentlicht in: | Journal of applied crystallography 2004-12, Vol.37 (6), p.947-956 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | 6 |
container_start_page | 947 |
container_title | Journal of applied crystallography |
container_volume | 37 |
creator | Wang, Yanbin Uchida, Takeyuki Von Dreele, Robert Rivers, Mark L. Nishiyama, Norimasa Funakoshi, Ken-ichi Nozawa, Akifumi Kaneko, Hiroshi |
description | A new diffraction technique for combined angle‐ and energy‐dispersive structural analysis and refinement (CAESAR), by collecting angle‐dispersive data using a solid‐state detector (SSD) and white synchrotron radiation, is introduced. By step scanning a well calibrated SSD over a limited 2θ range, a series of one‐dimensional energy‐dispersive data (intensity versus energy) are obtained as a function of 2θ. The entire intensity (Int) data set consists of several thousand channels covering a range of photon energies, E (up to ∼150 keV), at each of the ∼1000 2θ steps, forming a 2–4 mega‐element two‐dimensional array, Int(E, 2θ). These intensity data are then regrouped according to photon energies, which are defined in the multichannel SSD as individual channels, yielding a large number of intensity versus 2θ (angle‐dispersive) data sets, Int(E = const., 2θ), each of which corresponds to a given photon energy or wavelength. The entire data set, selected subsets or composite scans can be used for multiple data set Rietveld refinement. Data collected both on α‐Al2O3 (a NIST diffraction standard) at ambient conditions and on a mixture of MgO and Au at high pressure were analyzed using the Rietveld technique, with varying schemes of data treatment. Furthermore, it is demonstrated that data within certain energy bands (ΔE/E = ±10%) may be binned together to improve counting statistics in a composite angle‐dispersive scan, even when collected with much coarser scan steps of 0.1 or 0.2°. This technique is useful for high‐pressure as well as general purpose powder diffraction studies that have limited X‐ray access to the sample using synchrotron radiation. Several advantages are discussed. |
doi_str_mv | 10.1107/S0021889804022502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_15010791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28764087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5762-9226ae72129c1787387c297499b6c1e76ff9a7f786b3138143956132358b62c23</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqXwA7hFILgF7HHij2O1wLaogvIluFleZ7J1Se1gJyz773GUCio47Mkj-XlGM_MWxWNKXlBKxMtPhACVUklSE4CGwJ3iiHJCqkZwcfdWfb94kNIVIZQLgKMinpQed-WI9tK7HxOWXYil8dseq9alAWNyP7Ecwq7FWLau66Kxowu-nJLz20yW6DFu97fphOM05K-2THtvL2MYYxaiaZ2Z1YfFvc70CR_dvMfFlzevP69Oq_P367PVyXll85xQKQBuUAAFZamQgklhQYlaqQ23FAXvOmVEJyTfMMokrZlqOGXAGrnhYIEdF0-XviGNTifr5iVt8B7tqGlD8tkUzdTzhRpiyPunUV-7ZLHvjccwJQ0KFGtUcxiUgtckz3kYBFGTmmfwyT_gVZiizzfRQPJ8kqg6Q3SBbAwpRez0EN21iXtNiZ6j1_9Fn51nN41NsqbPmXnr0l-Rg1KCzpxcuJ3rcX-4sX67-njxKhezWi2qSyP--qOa-F1zwUSjv75b628r-qGGC6rX7Dd1rcsG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205018094</pqid></control><display><type>article</type><title>A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Yanbin ; Uchida, Takeyuki ; Von Dreele, Robert ; Rivers, Mark L. ; Nishiyama, Norimasa ; Funakoshi, Ken-ichi ; Nozawa, Akifumi ; Kaneko, Hiroshi</creator><creatorcontrib>Wang, Yanbin ; Uchida, Takeyuki ; Von Dreele, Robert ; Rivers, Mark L. ; Nishiyama, Norimasa ; Funakoshi, Ken-ichi ; Nozawa, Akifumi ; Kaneko, Hiroshi ; Advanced Photon Source, Argonne National Laboratory, Argonne, IL (US) ; Japan Synchrotron Research Inst ; Japan Atomic Energy Inst. (US) ; Univ. of Chicago</creatorcontrib><description>A new diffraction technique for combined angle‐ and energy‐dispersive structural analysis and refinement (CAESAR), by collecting angle‐dispersive data using a solid‐state detector (SSD) and white synchrotron radiation, is introduced. By step scanning a well calibrated SSD over a limited 2θ range, a series of one‐dimensional energy‐dispersive data (intensity versus energy) are obtained as a function of 2θ. The entire intensity (Int) data set consists of several thousand channels covering a range of photon energies, E (up to ∼150 keV), at each of the ∼1000 2θ steps, forming a 2–4 mega‐element two‐dimensional array, Int(E, 2θ). These intensity data are then regrouped according to photon energies, which are defined in the multichannel SSD as individual channels, yielding a large number of intensity versus 2θ (angle‐dispersive) data sets, Int(E = const., 2θ), each of which corresponds to a given photon energy or wavelength. The entire data set, selected subsets or composite scans can be used for multiple data set Rietveld refinement. Data collected both on α‐Al2O3 (a NIST diffraction standard) at ambient conditions and on a mixture of MgO and Au at high pressure were analyzed using the Rietveld technique, with varying schemes of data treatment. Furthermore, it is demonstrated that data within certain energy bands (ΔE/E = ±10%) may be binned together to improve counting statistics in a composite angle‐dispersive scan, even when collected with much coarser scan steps of 0.1 or 0.2°. This technique is useful for high‐pressure as well as general purpose powder diffraction studies that have limited X‐ray access to the sample using synchrotron radiation. Several advantages are discussed.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S0021889804022502</identifier><identifier>CODEN: JACGAR</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Munksgaard International Publishers</publisher><subject>ADVANCED PHOTON SOURCE ; Condensed matter: structure, mechanical and thermal properties ; DIFFRACTION ; Exact sciences and technology ; high-pressure diffraction ; Inorganic compounds ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; multiple-wavelength powder diffraction ; Physics ; POWDERS ; Rietveld refinement ; Single-crystal and powder diffraction ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; SYNCHROTRON RADIATION ; Water, oxides, hydroxides, peroxides ; X-ray diffraction and scattering</subject><ispartof>Journal of applied crystallography, 2004-12, Vol.37 (6), p.947-956</ispartof><rights>2005 INIST-CNRS</rights><rights>International Union of Crystallography, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5762-9226ae72129c1787387c297499b6c1e76ff9a7f786b3138143956132358b62c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0021889804022502$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0021889804022502$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16299712$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/15010791$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Uchida, Takeyuki</creatorcontrib><creatorcontrib>Von Dreele, Robert</creatorcontrib><creatorcontrib>Rivers, Mark L.</creatorcontrib><creatorcontrib>Nishiyama, Norimasa</creatorcontrib><creatorcontrib>Funakoshi, Ken-ichi</creatorcontrib><creatorcontrib>Nozawa, Akifumi</creatorcontrib><creatorcontrib>Kaneko, Hiroshi</creatorcontrib><creatorcontrib>Advanced Photon Source, Argonne National Laboratory, Argonne, IL (US)</creatorcontrib><creatorcontrib>Japan Synchrotron Research Inst</creatorcontrib><creatorcontrib>Japan Atomic Energy Inst. (US)</creatorcontrib><creatorcontrib>Univ. of Chicago</creatorcontrib><title>A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>A new diffraction technique for combined angle‐ and energy‐dispersive structural analysis and refinement (CAESAR), by collecting angle‐dispersive data using a solid‐state detector (SSD) and white synchrotron radiation, is introduced. By step scanning a well calibrated SSD over a limited 2θ range, a series of one‐dimensional energy‐dispersive data (intensity versus energy) are obtained as a function of 2θ. The entire intensity (Int) data set consists of several thousand channels covering a range of photon energies, E (up to ∼150 keV), at each of the ∼1000 2θ steps, forming a 2–4 mega‐element two‐dimensional array, Int(E, 2θ). These intensity data are then regrouped according to photon energies, which are defined in the multichannel SSD as individual channels, yielding a large number of intensity versus 2θ (angle‐dispersive) data sets, Int(E = const., 2θ), each of which corresponds to a given photon energy or wavelength. The entire data set, selected subsets or composite scans can be used for multiple data set Rietveld refinement. Data collected both on α‐Al2O3 (a NIST diffraction standard) at ambient conditions and on a mixture of MgO and Au at high pressure were analyzed using the Rietveld technique, with varying schemes of data treatment. Furthermore, it is demonstrated that data within certain energy bands (ΔE/E = ±10%) may be binned together to improve counting statistics in a composite angle‐dispersive scan, even when collected with much coarser scan steps of 0.1 or 0.2°. This technique is useful for high‐pressure as well as general purpose powder diffraction studies that have limited X‐ray access to the sample using synchrotron radiation. Several advantages are discussed.</description><subject>ADVANCED PHOTON SOURCE</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>DIFFRACTION</subject><subject>Exact sciences and technology</subject><subject>high-pressure diffraction</subject><subject>Inorganic compounds</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>multiple-wavelength powder diffraction</subject><subject>Physics</subject><subject>POWDERS</subject><subject>Rietveld refinement</subject><subject>Single-crystal and powder diffraction</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>SYNCHROTRON RADIATION</subject><subject>Water, oxides, hydroxides, peroxides</subject><subject>X-ray diffraction and scattering</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEEqXwA7hFILgF7HHij2O1wLaogvIluFleZ7J1Se1gJyz773GUCio47Mkj-XlGM_MWxWNKXlBKxMtPhACVUklSE4CGwJ3iiHJCqkZwcfdWfb94kNIVIZQLgKMinpQed-WI9tK7HxOWXYil8dseq9alAWNyP7Ecwq7FWLau66Kxowu-nJLz20yW6DFu97fphOM05K-2THtvL2MYYxaiaZ2Z1YfFvc70CR_dvMfFlzevP69Oq_P367PVyXll85xQKQBuUAAFZamQgklhQYlaqQ23FAXvOmVEJyTfMMokrZlqOGXAGrnhYIEdF0-XviGNTifr5iVt8B7tqGlD8tkUzdTzhRpiyPunUV-7ZLHvjccwJQ0KFGtUcxiUgtckz3kYBFGTmmfwyT_gVZiizzfRQPJ8kqg6Q3SBbAwpRez0EN21iXtNiZ6j1_9Fn51nN41NsqbPmXnr0l-Rg1KCzpxcuJ3rcX-4sX67-njxKhezWi2qSyP--qOa-F1zwUSjv75b628r-qGGC6rX7Dd1rcsG</recordid><startdate>200412</startdate><enddate>200412</enddate><creator>Wang, Yanbin</creator><creator>Uchida, Takeyuki</creator><creator>Von Dreele, Robert</creator><creator>Rivers, Mark L.</creator><creator>Nishiyama, Norimasa</creator><creator>Funakoshi, Ken-ichi</creator><creator>Nozawa, Akifumi</creator><creator>Kaneko, Hiroshi</creator><general>Munksgaard International Publishers</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QQ</scope><scope>H8D</scope><scope>7QF</scope><scope>OTOTI</scope></search><sort><creationdate>200412</creationdate><title>A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation</title><author>Wang, Yanbin ; Uchida, Takeyuki ; Von Dreele, Robert ; Rivers, Mark L. ; Nishiyama, Norimasa ; Funakoshi, Ken-ichi ; Nozawa, Akifumi ; Kaneko, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5762-9226ae72129c1787387c297499b6c1e76ff9a7f786b3138143956132358b62c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ADVANCED PHOTON SOURCE</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>DIFFRACTION</topic><topic>Exact sciences and technology</topic><topic>high-pressure diffraction</topic><topic>Inorganic compounds</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>multiple-wavelength powder diffraction</topic><topic>Physics</topic><topic>POWDERS</topic><topic>Rietveld refinement</topic><topic>Single-crystal and powder diffraction</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>SYNCHROTRON RADIATION</topic><topic>Water, oxides, hydroxides, peroxides</topic><topic>X-ray diffraction and scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Uchida, Takeyuki</creatorcontrib><creatorcontrib>Von Dreele, Robert</creatorcontrib><creatorcontrib>Rivers, Mark L.</creatorcontrib><creatorcontrib>Nishiyama, Norimasa</creatorcontrib><creatorcontrib>Funakoshi, Ken-ichi</creatorcontrib><creatorcontrib>Nozawa, Akifumi</creatorcontrib><creatorcontrib>Kaneko, Hiroshi</creatorcontrib><creatorcontrib>Advanced Photon Source, Argonne National Laboratory, Argonne, IL (US)</creatorcontrib><creatorcontrib>Japan Synchrotron Research Inst</creatorcontrib><creatorcontrib>Japan Atomic Energy Inst. (US)</creatorcontrib><creatorcontrib>Univ. of Chicago</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Aerospace Database</collection><collection>Aluminium Industry Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanbin</au><au>Uchida, Takeyuki</au><au>Von Dreele, Robert</au><au>Rivers, Mark L.</au><au>Nishiyama, Norimasa</au><au>Funakoshi, Ken-ichi</au><au>Nozawa, Akifumi</au><au>Kaneko, Hiroshi</au><aucorp>Advanced Photon Source, Argonne National Laboratory, Argonne, IL (US)</aucorp><aucorp>Japan Synchrotron Research Inst</aucorp><aucorp>Japan Atomic Energy Inst. (US)</aucorp><aucorp>Univ. of Chicago</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2004-12</date><risdate>2004</risdate><volume>37</volume><issue>6</issue><spage>947</spage><epage>956</epage><pages>947-956</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><coden>JACGAR</coden><abstract>A new diffraction technique for combined angle‐ and energy‐dispersive structural analysis and refinement (CAESAR), by collecting angle‐dispersive data using a solid‐state detector (SSD) and white synchrotron radiation, is introduced. By step scanning a well calibrated SSD over a limited 2θ range, a series of one‐dimensional energy‐dispersive data (intensity versus energy) are obtained as a function of 2θ. The entire intensity (Int) data set consists of several thousand channels covering a range of photon energies, E (up to ∼150 keV), at each of the ∼1000 2θ steps, forming a 2–4 mega‐element two‐dimensional array, Int(E, 2θ). These intensity data are then regrouped according to photon energies, which are defined in the multichannel SSD as individual channels, yielding a large number of intensity versus 2θ (angle‐dispersive) data sets, Int(E = const., 2θ), each of which corresponds to a given photon energy or wavelength. The entire data set, selected subsets or composite scans can be used for multiple data set Rietveld refinement. Data collected both on α‐Al2O3 (a NIST diffraction standard) at ambient conditions and on a mixture of MgO and Au at high pressure were analyzed using the Rietveld technique, with varying schemes of data treatment. Furthermore, it is demonstrated that data within certain energy bands (ΔE/E = ±10%) may be binned together to improve counting statistics in a composite angle‐dispersive scan, even when collected with much coarser scan steps of 0.1 or 0.2°. This technique is useful for high‐pressure as well as general purpose powder diffraction studies that have limited X‐ray access to the sample using synchrotron radiation. Several advantages are discussed.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Munksgaard International Publishers</pub><doi>10.1107/S0021889804022502</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2004-12, Vol.37 (6), p.947-956 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_osti_scitechconnect_15010791 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | ADVANCED PHOTON SOURCE Condensed matter: structure, mechanical and thermal properties DIFFRACTION Exact sciences and technology high-pressure diffraction Inorganic compounds INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY multiple-wavelength powder diffraction Physics POWDERS Rietveld refinement Single-crystal and powder diffraction Structure of solids and liquids crystallography Structure of specific crystalline solids SYNCHROTRON RADIATION Water, oxides, hydroxides, peroxides X-ray diffraction and scattering |
title | A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20technique%20for%20angle-dispersive%20powder%20diffraction%20using%20an%20energy-dispersive%20setup%20and%20synchrotron%20radiation&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Wang,%20Yanbin&rft.aucorp=Advanced%20Photon%20Source,%20Argonne%20National%20Laboratory,%20Argonne,%20IL%20(US)&rft.date=2004-12&rft.volume=37&rft.issue=6&rft.spage=947&rft.epage=956&rft.pages=947-956&rft.issn=1600-5767&rft.eissn=1600-5767&rft.coden=JACGAR&rft_id=info:doi/10.1107/S0021889804022502&rft_dat=%3Cproquest_osti_%3E28764087%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205018094&rft_id=info:pmid/&rfr_iscdi=true |