Promise and challenges of SiCf/SiC composites for fusion energy applications

Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2002-12, Vol.307-311, p.1057-1072
Hauptverfasser: Jones, R.H, Giancarli, L, Hasegawa, A, Katoh, Y, Kohyama, A, Riccardi, B, Snead, L.L, Weber, W.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1072
container_issue
container_start_page 1057
container_title Journal of nuclear materials
container_volume 307-311
creator Jones, R.H
Giancarli, L
Hasegawa, A
Katoh, Y
Kohyama, A
Riccardi, B
Snead, L.L
Weber, W.J
description Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern.
doi_str_mv 10.1016/S0022-3115(02)00976-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_15003355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27655204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QQgIooe1k2STzR6l-AUFheo5pOmkXdlu1mR76L83bcXLDLw8DPM-hFwzeGDA1GQOwHkhGJN3wO8B6koV8oSMmK5EUWoOp2T0j5yTi5S-AUDWIEdk9hHDpklIbbekbm3bFrsVJho8nTdTP8mDurDpQ2qGHPsQqd-mJnQUO4yrHbV93zbODjlKl-TM2zbh1d8ek6_np8_pazF7f3mbPs4KJyo1FDUr65JLJxa2Qr5wmtVScbvkoFAvOGgl0OkFs0xJsWS-1Dp3staWiB4ZE2Nyc7wb0tCY5PJrbu1C16EbDJMAQkiZqdsj1cfws8U0mFzUYdvaDsM2GV4pKTmUGZRH0MWQUkRv-thsbNwZBmZv2BwMm70-A9wcDBspfgEclm2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27655204</pqid></control><display><type>article</type><title>Promise and challenges of SiCf/SiC composites for fusion energy applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jones, R.H ; Giancarli, L ; Hasegawa, A ; Katoh, Y ; Kohyama, A ; Riccardi, B ; Snead, L.L ; Weber, W.J</creator><creatorcontrib>Jones, R.H ; Giancarli, L ; Hasegawa, A ; Katoh, Y ; Kohyama, A ; Riccardi, B ; Snead, L.L ; Weber, W.J ; Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><description>Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/S0022-3115(02)00976-5</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ATOMIC-SCALE SIMULATION ; BUILDING MATERIALS ; CARBIDES ; COMPUTER-SIMULATION ; CORROSION ; CREEP ; DEFECT PRODUCTION ; DISPLACEMENT CASCADES ; EFFECTIVE THERMAL-CONDUCTIVITY ; ENERGY CONVERSION ; FIBER COMPOSITES ; INDUCED AMORPHIZATION ; MATRIX COMPOSITES ; MOLECULAR-DYNAMICS ; POWER PLANTS ; RADIATIONS ; RADIOACTIVITY ; SAFETY ; SILICON CARBIDES ; SILICON-CARBIDE ; SIMULATION ; STABILITY ; THERMAL CONDUCTIVITY ; THERMAL SHOCK ; THERMONUCLEAR REACTORS ; TRANSMUTATION</subject><ispartof>Journal of nuclear materials, 2002-12, Vol.307-311, p.1057-1072</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</citedby><cites>FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/15003355$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, R.H</creatorcontrib><creatorcontrib>Giancarli, L</creatorcontrib><creatorcontrib>Hasegawa, A</creatorcontrib><creatorcontrib>Katoh, Y</creatorcontrib><creatorcontrib>Kohyama, A</creatorcontrib><creatorcontrib>Riccardi, B</creatorcontrib><creatorcontrib>Snead, L.L</creatorcontrib><creatorcontrib>Weber, W.J</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><title>Promise and challenges of SiCf/SiC composites for fusion energy applications</title><title>Journal of nuclear materials</title><description>Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ATOMIC-SCALE SIMULATION</subject><subject>BUILDING MATERIALS</subject><subject>CARBIDES</subject><subject>COMPUTER-SIMULATION</subject><subject>CORROSION</subject><subject>CREEP</subject><subject>DEFECT PRODUCTION</subject><subject>DISPLACEMENT CASCADES</subject><subject>EFFECTIVE THERMAL-CONDUCTIVITY</subject><subject>ENERGY CONVERSION</subject><subject>FIBER COMPOSITES</subject><subject>INDUCED AMORPHIZATION</subject><subject>MATRIX COMPOSITES</subject><subject>MOLECULAR-DYNAMICS</subject><subject>POWER PLANTS</subject><subject>RADIATIONS</subject><subject>RADIOACTIVITY</subject><subject>SAFETY</subject><subject>SILICON CARBIDES</subject><subject>SILICON-CARBIDE</subject><subject>SIMULATION</subject><subject>STABILITY</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMAL SHOCK</subject><subject>THERMONUCLEAR REACTORS</subject><subject>TRANSMUTATION</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QQgIooe1k2STzR6l-AUFheo5pOmkXdlu1mR76L83bcXLDLw8DPM-hFwzeGDA1GQOwHkhGJN3wO8B6koV8oSMmK5EUWoOp2T0j5yTi5S-AUDWIEdk9hHDpklIbbekbm3bFrsVJho8nTdTP8mDurDpQ2qGHPsQqd-mJnQUO4yrHbV93zbODjlKl-TM2zbh1d8ek6_np8_pazF7f3mbPs4KJyo1FDUr65JLJxa2Qr5wmtVScbvkoFAvOGgl0OkFs0xJsWS-1Dp3staWiB4ZE2Nyc7wb0tCY5PJrbu1C16EbDJMAQkiZqdsj1cfws8U0mFzUYdvaDsM2GV4pKTmUGZRH0MWQUkRv-thsbNwZBmZv2BwMm70-A9wcDBspfgEclm2g</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Jones, R.H</creator><creator>Giancarli, L</creator><creator>Hasegawa, A</creator><creator>Katoh, Y</creator><creator>Kohyama, A</creator><creator>Riccardi, B</creator><creator>Snead, L.L</creator><creator>Weber, W.J</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20021201</creationdate><title>Promise and challenges of SiCf/SiC composites for fusion energy applications</title><author>Jones, R.H ; Giancarli, L ; Hasegawa, A ; Katoh, Y ; Kohyama, A ; Riccardi, B ; Snead, L.L ; Weber, W.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ATOMIC-SCALE SIMULATION</topic><topic>BUILDING MATERIALS</topic><topic>CARBIDES</topic><topic>COMPUTER-SIMULATION</topic><topic>CORROSION</topic><topic>CREEP</topic><topic>DEFECT PRODUCTION</topic><topic>DISPLACEMENT CASCADES</topic><topic>EFFECTIVE THERMAL-CONDUCTIVITY</topic><topic>ENERGY CONVERSION</topic><topic>FIBER COMPOSITES</topic><topic>INDUCED AMORPHIZATION</topic><topic>MATRIX COMPOSITES</topic><topic>MOLECULAR-DYNAMICS</topic><topic>POWER PLANTS</topic><topic>RADIATIONS</topic><topic>RADIOACTIVITY</topic><topic>SAFETY</topic><topic>SILICON CARBIDES</topic><topic>SILICON-CARBIDE</topic><topic>SIMULATION</topic><topic>STABILITY</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMAL SHOCK</topic><topic>THERMONUCLEAR REACTORS</topic><topic>TRANSMUTATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, R.H</creatorcontrib><creatorcontrib>Giancarli, L</creatorcontrib><creatorcontrib>Hasegawa, A</creatorcontrib><creatorcontrib>Katoh, Y</creatorcontrib><creatorcontrib>Kohyama, A</creatorcontrib><creatorcontrib>Riccardi, B</creatorcontrib><creatorcontrib>Snead, L.L</creatorcontrib><creatorcontrib>Weber, W.J</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, R.H</au><au>Giancarli, L</au><au>Hasegawa, A</au><au>Katoh, Y</au><au>Kohyama, A</au><au>Riccardi, B</au><au>Snead, L.L</au><au>Weber, W.J</au><aucorp>Pacific Northwest National Lab., Richland, WA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promise and challenges of SiCf/SiC composites for fusion energy applications</atitle><jtitle>Journal of nuclear materials</jtitle><date>2002-12-01</date><risdate>2002</risdate><volume>307-311</volume><spage>1057</spage><epage>1072</epage><pages>1057-1072</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern.</abstract><cop>United States</cop><doi>10.1016/S0022-3115(02)00976-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2002-12, Vol.307-311, p.1057-1072
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_15003355
source Access via ScienceDirect (Elsevier)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ATOMIC-SCALE SIMULATION
BUILDING MATERIALS
CARBIDES
COMPUTER-SIMULATION
CORROSION
CREEP
DEFECT PRODUCTION
DISPLACEMENT CASCADES
EFFECTIVE THERMAL-CONDUCTIVITY
ENERGY CONVERSION
FIBER COMPOSITES
INDUCED AMORPHIZATION
MATRIX COMPOSITES
MOLECULAR-DYNAMICS
POWER PLANTS
RADIATIONS
RADIOACTIVITY
SAFETY
SILICON CARBIDES
SILICON-CARBIDE
SIMULATION
STABILITY
THERMAL CONDUCTIVITY
THERMAL SHOCK
THERMONUCLEAR REACTORS
TRANSMUTATION
title Promise and challenges of SiCf/SiC composites for fusion energy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promise%20and%20challenges%20of%20SiCf/SiC%20composites%20for%20fusion%20energy%20applications&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Jones,%20R.H&rft.aucorp=Pacific%20Northwest%20National%20Lab.,%20Richland,%20WA%20(US)&rft.date=2002-12-01&rft.volume=307-311&rft.spage=1057&rft.epage=1072&rft.pages=1057-1072&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/S0022-3115(02)00976-5&rft_dat=%3Cproquest_osti_%3E27655204%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27655204&rft_id=info:pmid/&rfr_iscdi=true