Promise and challenges of SiCf/SiC composites for fusion energy applications
Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2002-12, Vol.307-311, p.1057-1072 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1072 |
---|---|
container_issue | |
container_start_page | 1057 |
container_title | Journal of nuclear materials |
container_volume | 307-311 |
creator | Jones, R.H Giancarli, L Hasegawa, A Katoh, Y Kohyama, A Riccardi, B Snead, L.L Weber, W.J |
description | Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern. |
doi_str_mv | 10.1016/S0022-3115(02)00976-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_15003355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27655204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QQgIooe1k2STzR6l-AUFheo5pOmkXdlu1mR76L83bcXLDLw8DPM-hFwzeGDA1GQOwHkhGJN3wO8B6koV8oSMmK5EUWoOp2T0j5yTi5S-AUDWIEdk9hHDpklIbbekbm3bFrsVJho8nTdTP8mDurDpQ2qGHPsQqd-mJnQUO4yrHbV93zbODjlKl-TM2zbh1d8ek6_np8_pazF7f3mbPs4KJyo1FDUr65JLJxa2Qr5wmtVScbvkoFAvOGgl0OkFs0xJsWS-1Dp3staWiB4ZE2Nyc7wb0tCY5PJrbu1C16EbDJMAQkiZqdsj1cfws8U0mFzUYdvaDsM2GV4pKTmUGZRH0MWQUkRv-thsbNwZBmZv2BwMm70-A9wcDBspfgEclm2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27655204</pqid></control><display><type>article</type><title>Promise and challenges of SiCf/SiC composites for fusion energy applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jones, R.H ; Giancarli, L ; Hasegawa, A ; Katoh, Y ; Kohyama, A ; Riccardi, B ; Snead, L.L ; Weber, W.J</creator><creatorcontrib>Jones, R.H ; Giancarli, L ; Hasegawa, A ; Katoh, Y ; Kohyama, A ; Riccardi, B ; Snead, L.L ; Weber, W.J ; Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><description>Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/S0022-3115(02)00976-5</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ATOMIC-SCALE SIMULATION ; BUILDING MATERIALS ; CARBIDES ; COMPUTER-SIMULATION ; CORROSION ; CREEP ; DEFECT PRODUCTION ; DISPLACEMENT CASCADES ; EFFECTIVE THERMAL-CONDUCTIVITY ; ENERGY CONVERSION ; FIBER COMPOSITES ; INDUCED AMORPHIZATION ; MATRIX COMPOSITES ; MOLECULAR-DYNAMICS ; POWER PLANTS ; RADIATIONS ; RADIOACTIVITY ; SAFETY ; SILICON CARBIDES ; SILICON-CARBIDE ; SIMULATION ; STABILITY ; THERMAL CONDUCTIVITY ; THERMAL SHOCK ; THERMONUCLEAR REACTORS ; TRANSMUTATION</subject><ispartof>Journal of nuclear materials, 2002-12, Vol.307-311, p.1057-1072</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</citedby><cites>FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/15003355$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, R.H</creatorcontrib><creatorcontrib>Giancarli, L</creatorcontrib><creatorcontrib>Hasegawa, A</creatorcontrib><creatorcontrib>Katoh, Y</creatorcontrib><creatorcontrib>Kohyama, A</creatorcontrib><creatorcontrib>Riccardi, B</creatorcontrib><creatorcontrib>Snead, L.L</creatorcontrib><creatorcontrib>Weber, W.J</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><title>Promise and challenges of SiCf/SiC composites for fusion energy applications</title><title>Journal of nuclear materials</title><description>Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ATOMIC-SCALE SIMULATION</subject><subject>BUILDING MATERIALS</subject><subject>CARBIDES</subject><subject>COMPUTER-SIMULATION</subject><subject>CORROSION</subject><subject>CREEP</subject><subject>DEFECT PRODUCTION</subject><subject>DISPLACEMENT CASCADES</subject><subject>EFFECTIVE THERMAL-CONDUCTIVITY</subject><subject>ENERGY CONVERSION</subject><subject>FIBER COMPOSITES</subject><subject>INDUCED AMORPHIZATION</subject><subject>MATRIX COMPOSITES</subject><subject>MOLECULAR-DYNAMICS</subject><subject>POWER PLANTS</subject><subject>RADIATIONS</subject><subject>RADIOACTIVITY</subject><subject>SAFETY</subject><subject>SILICON CARBIDES</subject><subject>SILICON-CARBIDE</subject><subject>SIMULATION</subject><subject>STABILITY</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMAL SHOCK</subject><subject>THERMONUCLEAR REACTORS</subject><subject>TRANSMUTATION</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QQgIooe1k2STzR6l-AUFheo5pOmkXdlu1mR76L83bcXLDLw8DPM-hFwzeGDA1GQOwHkhGJN3wO8B6koV8oSMmK5EUWoOp2T0j5yTi5S-AUDWIEdk9hHDpklIbbekbm3bFrsVJho8nTdTP8mDurDpQ2qGHPsQqd-mJnQUO4yrHbV93zbODjlKl-TM2zbh1d8ek6_np8_pazF7f3mbPs4KJyo1FDUr65JLJxa2Qr5wmtVScbvkoFAvOGgl0OkFs0xJsWS-1Dp3staWiB4ZE2Nyc7wb0tCY5PJrbu1C16EbDJMAQkiZqdsj1cfws8U0mFzUYdvaDsM2GV4pKTmUGZRH0MWQUkRv-thsbNwZBmZv2BwMm70-A9wcDBspfgEclm2g</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Jones, R.H</creator><creator>Giancarli, L</creator><creator>Hasegawa, A</creator><creator>Katoh, Y</creator><creator>Kohyama, A</creator><creator>Riccardi, B</creator><creator>Snead, L.L</creator><creator>Weber, W.J</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20021201</creationdate><title>Promise and challenges of SiCf/SiC composites for fusion energy applications</title><author>Jones, R.H ; Giancarli, L ; Hasegawa, A ; Katoh, Y ; Kohyama, A ; Riccardi, B ; Snead, L.L ; Weber, W.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-9149425c3ba7e2bc819562ad206e8b20863ec8b1a1653d1f488097aaa4eefe113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ATOMIC-SCALE SIMULATION</topic><topic>BUILDING MATERIALS</topic><topic>CARBIDES</topic><topic>COMPUTER-SIMULATION</topic><topic>CORROSION</topic><topic>CREEP</topic><topic>DEFECT PRODUCTION</topic><topic>DISPLACEMENT CASCADES</topic><topic>EFFECTIVE THERMAL-CONDUCTIVITY</topic><topic>ENERGY CONVERSION</topic><topic>FIBER COMPOSITES</topic><topic>INDUCED AMORPHIZATION</topic><topic>MATRIX COMPOSITES</topic><topic>MOLECULAR-DYNAMICS</topic><topic>POWER PLANTS</topic><topic>RADIATIONS</topic><topic>RADIOACTIVITY</topic><topic>SAFETY</topic><topic>SILICON CARBIDES</topic><topic>SILICON-CARBIDE</topic><topic>SIMULATION</topic><topic>STABILITY</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMAL SHOCK</topic><topic>THERMONUCLEAR REACTORS</topic><topic>TRANSMUTATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, R.H</creatorcontrib><creatorcontrib>Giancarli, L</creatorcontrib><creatorcontrib>Hasegawa, A</creatorcontrib><creatorcontrib>Katoh, Y</creatorcontrib><creatorcontrib>Kohyama, A</creatorcontrib><creatorcontrib>Riccardi, B</creatorcontrib><creatorcontrib>Snead, L.L</creatorcontrib><creatorcontrib>Weber, W.J</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, R.H</au><au>Giancarli, L</au><au>Hasegawa, A</au><au>Katoh, Y</au><au>Kohyama, A</au><au>Riccardi, B</au><au>Snead, L.L</au><au>Weber, W.J</au><aucorp>Pacific Northwest National Lab., Richland, WA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promise and challenges of SiCf/SiC composites for fusion energy applications</atitle><jtitle>Journal of nuclear materials</jtitle><date>2002-12-01</date><risdate>2002</risdate><volume>307-311</volume><spage>1057</spage><epage>1072</epage><pages>1057-1072</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Silicon carbide fiber/silicon carbide matrix composites have been specified in several recent fusion power plant design studies because of their high operating temperature (1000--1100 deg C) and hence high energy conversion efficiencies. Radiation resistance of the beta -phase of SiC, excellent high-temperature fracture, creep, corrosion and thermal shock resistance and safety advantages arising from low induced radioactivity and afterheat are all positive attributes favoring the selection of SiCf/SiC composites. With the promise of these materials comes a number of challenges such as their thermal conductivity, radiation stability, gaseous transmutation rates, hermetic behavior and joining technology. Recent advances have been made in understanding radiation damage in SiC at the fundamental level through MD simulations of displacement cascades. Radiation stability of composites made with the advanced fibers of Nicalon Type S and the UBE Tyranno SA, where no change in strength was observed up to 10 dpa at 800 deg C, in the development of materials with improved thermal conductivity, modeling of thermal conductivity, joining techniques and models for life-prediction. High transmutation rates of C and Si to form H, He, Mg, and Al continue to be a concern.</abstract><cop>United States</cop><doi>10.1016/S0022-3115(02)00976-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2002-12, Vol.307-311, p.1057-1072 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_15003355 |
source | Access via ScienceDirect (Elsevier) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ATOMIC-SCALE SIMULATION BUILDING MATERIALS CARBIDES COMPUTER-SIMULATION CORROSION CREEP DEFECT PRODUCTION DISPLACEMENT CASCADES EFFECTIVE THERMAL-CONDUCTIVITY ENERGY CONVERSION FIBER COMPOSITES INDUCED AMORPHIZATION MATRIX COMPOSITES MOLECULAR-DYNAMICS POWER PLANTS RADIATIONS RADIOACTIVITY SAFETY SILICON CARBIDES SILICON-CARBIDE SIMULATION STABILITY THERMAL CONDUCTIVITY THERMAL SHOCK THERMONUCLEAR REACTORS TRANSMUTATION |
title | Promise and challenges of SiCf/SiC composites for fusion energy applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promise%20and%20challenges%20of%20SiCf/SiC%20composites%20for%20fusion%20energy%20applications&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Jones,%20R.H&rft.aucorp=Pacific%20Northwest%20National%20Lab.,%20Richland,%20WA%20(US)&rft.date=2002-12-01&rft.volume=307-311&rft.spage=1057&rft.epage=1072&rft.pages=1057-1072&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/S0022-3115(02)00976-5&rft_dat=%3Cproquest_osti_%3E27655204%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27655204&rft_id=info:pmid/&rfr_iscdi=true |