Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life
Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here,...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2017-11, Vol.2 (11), p.1533-1542 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1542 |
---|---|
container_issue | 11 |
container_start_page | 1533 |
container_title | Nature microbiology |
container_volume | 2 |
creator | Parks, Donovan H. Rinke, Christian Chuvochina, Maria Chaumeil, Pierre-Alain Woodcroft, Ben J. Evans, Paul N. Hugenholtz, Philip Tyson, Gene W. |
description | Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.
The recovery of 7,903 bacterial and archaeal metagenome-assembled genomes increases the phylogenetic diversity represented by public genome repositories and provides the first representatives from 20 candidate phyla. |
doi_str_mv | 10.1038/s41564-017-0012-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1500024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1938201818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-8edd32c3109ff3891d40420d25cd3109913df72649615d33d128178e53183f6b3</originalsourceid><addsrcrecordid>eNp1kU2L1TAUhoMoznCdH-BGim5cWM1JmjRdyuAXDAiiOyHkJqczHdrkmpOK99-bS8cPBFcJJ8_7hMPL2GPgL4FL84o6ULprOfQt5yDa_h47F1yZVole3__rfsYuiG55hbTQ2uiH7EwYM3TAxTn7-gl9-o752KSxiejyfGzMiwo3CxZ3jTEt2DoiXPYzhmYbUEPrnoqLZXJzDeCPg4uBmnKDTcmIJ9c8jfiIPRjdTHhxd-7Yl7dvPl--b68-vvtw-fqq9Yqb0hoMQQovgQ_jKM0AoeOd4EEoH07DAWQYe6G7QYMKUgYQBnqDSoKRo97LHXu6eROVyZKfCvobn2JEXyyouo3oKvR8gw45fVuRil0m8jjPLmJaycIgjeBgqnPHnv2D3qY1x7qCFSB7JYRUolKwUT4nooyjPeRpcflogdtTRXaryNaK7Kki29fMkzvzul8w_E78KqQCYgOoPsVrzH--_r_1JxXxmGY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137522352</pqid></control><display><type>article</type><title>Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Parks, Donovan H. ; Rinke, Christian ; Chuvochina, Maria ; Chaumeil, Pierre-Alain ; Woodcroft, Ben J. ; Evans, Paul N. ; Hugenholtz, Philip ; Tyson, Gene W.</creator><creatorcontrib>Parks, Donovan H. ; Rinke, Christian ; Chuvochina, Maria ; Chaumeil, Pierre-Alain ; Woodcroft, Ben J. ; Evans, Paul N. ; Hugenholtz, Philip ; Tyson, Gene W. ; Univ. of Arizona, Tucson, AZ (United States)</creatorcontrib><description>Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.
The recovery of 7,903 bacterial and archaeal metagenome-assembled genomes increases the phylogenetic diversity represented by public genome repositories and provides the first representatives from 20 candidate phyla.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-017-0012-7</identifier><identifier>PMID: 28894102</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2164 ; 631/181/757 ; 631/326/171 ; 631/326/2565/2142 ; Archaea - classification ; Archaea - genetics ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; BASIC BIOLOGICAL SCIENCES ; Biomedical and Life Sciences ; Computer applications ; Genome, Archaeal ; Genome, Bacterial ; Genomes ; Infectious Diseases ; Life Sciences ; Medical Microbiology ; Metagenome ; Metagenomics - methods ; Microbiology ; Parasitology ; Phylogenetics ; Phylogeny ; Sequence Analysis, DNA ; Virology</subject><ispartof>Nature microbiology, 2017-11, Vol.2 (11), p.1533-1542</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-8edd32c3109ff3891d40420d25cd3109913df72649615d33d128178e53183f6b3</citedby><cites>FETCH-LOGICAL-c508t-8edd32c3109ff3891d40420d25cd3109913df72649615d33d128178e53183f6b3</cites><orcidid>0000-0003-4632-1187 ; 0000-0001-6662-9010 ; 0000-0001-5386-7925 ; 0000000166629010 ; 0000000346321187 ; 0000000153867925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-017-0012-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-017-0012-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28894102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1500024$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parks, Donovan H.</creatorcontrib><creatorcontrib>Rinke, Christian</creatorcontrib><creatorcontrib>Chuvochina, Maria</creatorcontrib><creatorcontrib>Chaumeil, Pierre-Alain</creatorcontrib><creatorcontrib>Woodcroft, Ben J.</creatorcontrib><creatorcontrib>Evans, Paul N.</creatorcontrib><creatorcontrib>Hugenholtz, Philip</creatorcontrib><creatorcontrib>Tyson, Gene W.</creatorcontrib><creatorcontrib>Univ. of Arizona, Tucson, AZ (United States)</creatorcontrib><title>Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.
The recovery of 7,903 bacterial and archaeal metagenome-assembled genomes increases the phylogenetic diversity represented by public genome repositories and provides the first representatives from 20 candidate phyla.</description><subject>631/114/2164</subject><subject>631/181/757</subject><subject>631/326/171</subject><subject>631/326/2565/2142</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomedical and Life Sciences</subject><subject>Computer applications</subject><subject>Genome, Archaeal</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Metagenome</subject><subject>Metagenomics - methods</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Sequence Analysis, DNA</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2L1TAUhoMoznCdH-BGim5cWM1JmjRdyuAXDAiiOyHkJqczHdrkmpOK99-bS8cPBFcJJ8_7hMPL2GPgL4FL84o6ULprOfQt5yDa_h47F1yZVole3__rfsYuiG55hbTQ2uiH7EwYM3TAxTn7-gl9-o752KSxiejyfGzMiwo3CxZ3jTEt2DoiXPYzhmYbUEPrnoqLZXJzDeCPg4uBmnKDTcmIJ9c8jfiIPRjdTHhxd-7Yl7dvPl--b68-vvtw-fqq9Yqb0hoMQQovgQ_jKM0AoeOd4EEoH07DAWQYe6G7QYMKUgYQBnqDSoKRo97LHXu6eROVyZKfCvobn2JEXyyouo3oKvR8gw45fVuRil0m8jjPLmJaycIgjeBgqnPHnv2D3qY1x7qCFSB7JYRUolKwUT4nooyjPeRpcflogdtTRXaryNaK7Kki29fMkzvzul8w_E78KqQCYgOoPsVrzH--_r_1JxXxmGY</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Parks, Donovan H.</creator><creator>Rinke, Christian</creator><creator>Chuvochina, Maria</creator><creator>Chaumeil, Pierre-Alain</creator><creator>Woodcroft, Ben J.</creator><creator>Evans, Paul N.</creator><creator>Hugenholtz, Philip</creator><creator>Tyson, Gene W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4632-1187</orcidid><orcidid>https://orcid.org/0000-0001-6662-9010</orcidid><orcidid>https://orcid.org/0000-0001-5386-7925</orcidid><orcidid>https://orcid.org/0000000166629010</orcidid><orcidid>https://orcid.org/0000000346321187</orcidid><orcidid>https://orcid.org/0000000153867925</orcidid></search><sort><creationdate>20171101</creationdate><title>Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life</title><author>Parks, Donovan H. ; Rinke, Christian ; Chuvochina, Maria ; Chaumeil, Pierre-Alain ; Woodcroft, Ben J. ; Evans, Paul N. ; Hugenholtz, Philip ; Tyson, Gene W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-8edd32c3109ff3891d40420d25cd3109913df72649615d33d128178e53183f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/2164</topic><topic>631/181/757</topic><topic>631/326/171</topic><topic>631/326/2565/2142</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomedical and Life Sciences</topic><topic>Computer applications</topic><topic>Genome, Archaeal</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Metagenome</topic><topic>Metagenomics - methods</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Sequence Analysis, DNA</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parks, Donovan H.</creatorcontrib><creatorcontrib>Rinke, Christian</creatorcontrib><creatorcontrib>Chuvochina, Maria</creatorcontrib><creatorcontrib>Chaumeil, Pierre-Alain</creatorcontrib><creatorcontrib>Woodcroft, Ben J.</creatorcontrib><creatorcontrib>Evans, Paul N.</creatorcontrib><creatorcontrib>Hugenholtz, Philip</creatorcontrib><creatorcontrib>Tyson, Gene W.</creatorcontrib><creatorcontrib>Univ. of Arizona, Tucson, AZ (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parks, Donovan H.</au><au>Rinke, Christian</au><au>Chuvochina, Maria</au><au>Chaumeil, Pierre-Alain</au><au>Woodcroft, Ben J.</au><au>Evans, Paul N.</au><au>Hugenholtz, Philip</au><au>Tyson, Gene W.</au><aucorp>Univ. of Arizona, Tucson, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>2</volume><issue>11</issue><spage>1533</spage><epage>1542</epage><pages>1533-1542</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.
The recovery of 7,903 bacterial and archaeal metagenome-assembled genomes increases the phylogenetic diversity represented by public genome repositories and provides the first representatives from 20 candidate phyla.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28894102</pmid><doi>10.1038/s41564-017-0012-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4632-1187</orcidid><orcidid>https://orcid.org/0000-0001-6662-9010</orcidid><orcidid>https://orcid.org/0000-0001-5386-7925</orcidid><orcidid>https://orcid.org/0000000166629010</orcidid><orcidid>https://orcid.org/0000000346321187</orcidid><orcidid>https://orcid.org/0000000153867925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2017-11, Vol.2 (11), p.1533-1542 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_osti_scitechconnect_1500024 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 631/114/2164 631/181/757 631/326/171 631/326/2565/2142 Archaea - classification Archaea - genetics Bacteria Bacteria - classification Bacteria - genetics BASIC BIOLOGICAL SCIENCES Biomedical and Life Sciences Computer applications Genome, Archaeal Genome, Bacterial Genomes Infectious Diseases Life Sciences Medical Microbiology Metagenome Metagenomics - methods Microbiology Parasitology Phylogenetics Phylogeny Sequence Analysis, DNA Virology |
title | Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20nearly%208,000%20metagenome-assembled%20genomes%20substantially%20expands%20the%20tree%20of%20life&rft.jtitle=Nature%20microbiology&rft.au=Parks,%20Donovan%20H.&rft.aucorp=Univ.%20of%20Arizona,%20Tucson,%20AZ%20(United%20States)&rft.date=2017-11-01&rft.volume=2&rft.issue=11&rft.spage=1533&rft.epage=1542&rft.pages=1533-1542&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-017-0012-7&rft_dat=%3Cproquest_osti_%3E1938201818%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137522352&rft_id=info:pmid/28894102&rfr_iscdi=true |