Effect of extending conjugation via thiophene-based oligomers on the excited state electron transfer rates to ZnO nanocrystals
Oligothiophene dyes with two to five thiophene units were anchored to oleate-capped, quantum-confined zinc oxide nanocrystals (ZnO NCs) through a cyanoacrylate functional group. While the fluorescence of the bithiophene derivative was too weak for meaningful quenching studies, the fluorescence of th...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019-03, Vol.21 (13), p.6991-6998 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6998 |
---|---|
container_issue | 13 |
container_start_page | 6991 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Oehrlein, Amanda N Sanchez-Diaz, Antonio Goff, Philip C Planells, Miquel Robertson, Neil Blank, David A Gladfelter, Wayne L |
description | Oligothiophene dyes with two to five thiophene units were anchored to oleate-capped, quantum-confined zinc oxide nanocrystals (ZnO NCs) through a cyanoacrylate functional group. While the fluorescence of the bithiophene derivative was too weak for meaningful quenching studies, the fluorescence of the dyes with three, four and five thiophene rings was quenched upon binding to the NCs. Ultrafast pump-probe spectroscopy was used to observe the singlet excited states of the free dyes dissolved in dichloromethane as well as attached to a ZnO NC dispersed in the same solvent. When the dyes were bound to ZnO NCs, ultrafast spectroscopic measurements revealed rapid disappearance of the singlet excited state and appearance of a new transient absorption at higher energy that was assigned to the oxidized dye based on the similar absorption observed upon oxidation of the dye using nitrosonium ion. The appearance lifetimes of the oxidized dyes were assigned to the excited state electron transfer and were 36 ± 2, 22.3 ± 3.9, 26.5 ± 1.5 and 19.4 ± 0.8 ps for bi-, ter-, quarter- and quinquethiophene dyes respectively. Two factors contributed to the similarity in the electron transfer lifetime. First the excited state energies of the dyes were similar, and second, the free energy for electron transfer reaction was sufficiently large to move the event into the energy-independent regime. |
doi_str_mv | 10.1039/c9cp00420c |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1499829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191354774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-197e36c4e6e375bb25ac2a5bdf7030b0c564f883c72456bfde28458f7a8b0de83</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERT_gwg9AFlwQUoodfx9RVD6kSu0BLlwixxnvZpW1F9up6IXfXoctPXAaj-eZd2b0IvSakktKmPnojDsQwlvinqEzyiVrDNH8-dNbyVN0nvOOEEIFZS_QKSNaGkXoGfpz5T24gqPH8LtAGKewwS6G3bKxZYoB300Wl-0UD1sI0Aw2w4jjPG3iHlLGFShbqK1uKrWQiy01m6tiWkvJhuwh4VS_My4R_ww3ONgQXbqv7JxfohNfA7x6jBfox-er793X5vrmy7fu03XjOBWloUYBk46DBKbEMLTCutaKYfSKMDIQJyT3WjOnWi7k4EdoNRfaK6sHMoJmF-jtUTfmMvV53dZt65mhbtpTboxuTYXeH6FDir8WyKXfT9nBPNsAccl9Sw1lgivFK_ruP3QXlxTqCSuljNBSrlM_HCmXYs4JfH9I096m-56SfrWu70x3-9e6rsJvHiWXYQ_jE_rPK_YA3imVEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197958668</pqid></control><display><type>article</type><title>Effect of extending conjugation via thiophene-based oligomers on the excited state electron transfer rates to ZnO nanocrystals</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Oehrlein, Amanda N ; Sanchez-Diaz, Antonio ; Goff, Philip C ; Planells, Miquel ; Robertson, Neil ; Blank, David A ; Gladfelter, Wayne L</creator><creatorcontrib>Oehrlein, Amanda N ; Sanchez-Diaz, Antonio ; Goff, Philip C ; Planells, Miquel ; Robertson, Neil ; Blank, David A ; Gladfelter, Wayne L</creatorcontrib><description>Oligothiophene dyes with two to five thiophene units were anchored to oleate-capped, quantum-confined zinc oxide nanocrystals (ZnO NCs) through a cyanoacrylate functional group. While the fluorescence of the bithiophene derivative was too weak for meaningful quenching studies, the fluorescence of the dyes with three, four and five thiophene rings was quenched upon binding to the NCs. Ultrafast pump-probe spectroscopy was used to observe the singlet excited states of the free dyes dissolved in dichloromethane as well as attached to a ZnO NC dispersed in the same solvent. When the dyes were bound to ZnO NCs, ultrafast spectroscopic measurements revealed rapid disappearance of the singlet excited state and appearance of a new transient absorption at higher energy that was assigned to the oxidized dye based on the similar absorption observed upon oxidation of the dye using nitrosonium ion. The appearance lifetimes of the oxidized dyes were assigned to the excited state electron transfer and were 36 ± 2, 22.3 ± 3.9, 26.5 ± 1.5 and 19.4 ± 0.8 ps for bi-, ter-, quarter- and quinquethiophene dyes respectively. Two factors contributed to the similarity in the electron transfer lifetime. First the excited state energies of the dyes were similar, and second, the free energy for electron transfer reaction was sufficiently large to move the event into the energy-independent regime.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp00420c</identifier><identifier>PMID: 30869701</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Absorption ; Conjugation ; Dichloromethane ; Dyes ; Electron transfer ; Electrons ; Fluorescence ; Free energy ; Functional groups ; Nanocrystals ; Oligomers ; Oxidation ; Zinc oxide ; Zinc oxides</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-03, Vol.21 (13), p.6991-6998</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-197e36c4e6e375bb25ac2a5bdf7030b0c564f883c72456bfde28458f7a8b0de83</citedby><cites>FETCH-LOGICAL-c415t-197e36c4e6e375bb25ac2a5bdf7030b0c564f883c72456bfde28458f7a8b0de83</cites><orcidid>0000-0002-9230-6124 ; 0000-0002-9496-8930 ; 0000000292306124 ; 0000000294968930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30869701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1499829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oehrlein, Amanda N</creatorcontrib><creatorcontrib>Sanchez-Diaz, Antonio</creatorcontrib><creatorcontrib>Goff, Philip C</creatorcontrib><creatorcontrib>Planells, Miquel</creatorcontrib><creatorcontrib>Robertson, Neil</creatorcontrib><creatorcontrib>Blank, David A</creatorcontrib><creatorcontrib>Gladfelter, Wayne L</creatorcontrib><title>Effect of extending conjugation via thiophene-based oligomers on the excited state electron transfer rates to ZnO nanocrystals</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Oligothiophene dyes with two to five thiophene units were anchored to oleate-capped, quantum-confined zinc oxide nanocrystals (ZnO NCs) through a cyanoacrylate functional group. While the fluorescence of the bithiophene derivative was too weak for meaningful quenching studies, the fluorescence of the dyes with three, four and five thiophene rings was quenched upon binding to the NCs. Ultrafast pump-probe spectroscopy was used to observe the singlet excited states of the free dyes dissolved in dichloromethane as well as attached to a ZnO NC dispersed in the same solvent. When the dyes were bound to ZnO NCs, ultrafast spectroscopic measurements revealed rapid disappearance of the singlet excited state and appearance of a new transient absorption at higher energy that was assigned to the oxidized dye based on the similar absorption observed upon oxidation of the dye using nitrosonium ion. The appearance lifetimes of the oxidized dyes were assigned to the excited state electron transfer and were 36 ± 2, 22.3 ± 3.9, 26.5 ± 1.5 and 19.4 ± 0.8 ps for bi-, ter-, quarter- and quinquethiophene dyes respectively. Two factors contributed to the similarity in the electron transfer lifetime. First the excited state energies of the dyes were similar, and second, the free energy for electron transfer reaction was sufficiently large to move the event into the energy-independent regime.</description><subject>Absorption</subject><subject>Conjugation</subject><subject>Dichloromethane</subject><subject>Dyes</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Fluorescence</subject><subject>Free energy</subject><subject>Functional groups</subject><subject>Nanocrystals</subject><subject>Oligomers</subject><subject>Oxidation</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi1ERT_gwg9AFlwQUoodfx9RVD6kSu0BLlwixxnvZpW1F9up6IXfXoctPXAaj-eZd2b0IvSakktKmPnojDsQwlvinqEzyiVrDNH8-dNbyVN0nvOOEEIFZS_QKSNaGkXoGfpz5T24gqPH8LtAGKewwS6G3bKxZYoB300Wl-0UD1sI0Aw2w4jjPG3iHlLGFShbqK1uKrWQiy01m6tiWkvJhuwh4VS_My4R_ww3ONgQXbqv7JxfohNfA7x6jBfox-er793X5vrmy7fu03XjOBWloUYBk46DBKbEMLTCutaKYfSKMDIQJyT3WjOnWi7k4EdoNRfaK6sHMoJmF-jtUTfmMvV53dZt65mhbtpTboxuTYXeH6FDir8WyKXfT9nBPNsAccl9Sw1lgivFK_ruP3QXlxTqCSuljNBSrlM_HCmXYs4JfH9I096m-56SfrWu70x3-9e6rsJvHiWXYQ_jE_rPK_YA3imVEQ</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Oehrlein, Amanda N</creator><creator>Sanchez-Diaz, Antonio</creator><creator>Goff, Philip C</creator><creator>Planells, Miquel</creator><creator>Robertson, Neil</creator><creator>Blank, David A</creator><creator>Gladfelter, Wayne L</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9230-6124</orcidid><orcidid>https://orcid.org/0000-0002-9496-8930</orcidid><orcidid>https://orcid.org/0000000292306124</orcidid><orcidid>https://orcid.org/0000000294968930</orcidid></search><sort><creationdate>20190327</creationdate><title>Effect of extending conjugation via thiophene-based oligomers on the excited state electron transfer rates to ZnO nanocrystals</title><author>Oehrlein, Amanda N ; Sanchez-Diaz, Antonio ; Goff, Philip C ; Planells, Miquel ; Robertson, Neil ; Blank, David A ; Gladfelter, Wayne L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-197e36c4e6e375bb25ac2a5bdf7030b0c564f883c72456bfde28458f7a8b0de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Conjugation</topic><topic>Dichloromethane</topic><topic>Dyes</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Fluorescence</topic><topic>Free energy</topic><topic>Functional groups</topic><topic>Nanocrystals</topic><topic>Oligomers</topic><topic>Oxidation</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oehrlein, Amanda N</creatorcontrib><creatorcontrib>Sanchez-Diaz, Antonio</creatorcontrib><creatorcontrib>Goff, Philip C</creatorcontrib><creatorcontrib>Planells, Miquel</creatorcontrib><creatorcontrib>Robertson, Neil</creatorcontrib><creatorcontrib>Blank, David A</creatorcontrib><creatorcontrib>Gladfelter, Wayne L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oehrlein, Amanda N</au><au>Sanchez-Diaz, Antonio</au><au>Goff, Philip C</au><au>Planells, Miquel</au><au>Robertson, Neil</au><au>Blank, David A</au><au>Gladfelter, Wayne L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of extending conjugation via thiophene-based oligomers on the excited state electron transfer rates to ZnO nanocrystals</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>21</volume><issue>13</issue><spage>6991</spage><epage>6998</epage><pages>6991-6998</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Oligothiophene dyes with two to five thiophene units were anchored to oleate-capped, quantum-confined zinc oxide nanocrystals (ZnO NCs) through a cyanoacrylate functional group. While the fluorescence of the bithiophene derivative was too weak for meaningful quenching studies, the fluorescence of the dyes with three, four and five thiophene rings was quenched upon binding to the NCs. Ultrafast pump-probe spectroscopy was used to observe the singlet excited states of the free dyes dissolved in dichloromethane as well as attached to a ZnO NC dispersed in the same solvent. When the dyes were bound to ZnO NCs, ultrafast spectroscopic measurements revealed rapid disappearance of the singlet excited state and appearance of a new transient absorption at higher energy that was assigned to the oxidized dye based on the similar absorption observed upon oxidation of the dye using nitrosonium ion. The appearance lifetimes of the oxidized dyes were assigned to the excited state electron transfer and were 36 ± 2, 22.3 ± 3.9, 26.5 ± 1.5 and 19.4 ± 0.8 ps for bi-, ter-, quarter- and quinquethiophene dyes respectively. Two factors contributed to the similarity in the electron transfer lifetime. First the excited state energies of the dyes were similar, and second, the free energy for electron transfer reaction was sufficiently large to move the event into the energy-independent regime.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30869701</pmid><doi>10.1039/c9cp00420c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9230-6124</orcidid><orcidid>https://orcid.org/0000-0002-9496-8930</orcidid><orcidid>https://orcid.org/0000000292306124</orcidid><orcidid>https://orcid.org/0000000294968930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019-03, Vol.21 (13), p.6991-6998 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1499829 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Absorption Conjugation Dichloromethane Dyes Electron transfer Electrons Fluorescence Free energy Functional groups Nanocrystals Oligomers Oxidation Zinc oxide Zinc oxides |
title | Effect of extending conjugation via thiophene-based oligomers on the excited state electron transfer rates to ZnO nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20extending%20conjugation%20via%20thiophene-based%20oligomers%20on%20the%20excited%20state%20electron%20transfer%20rates%20to%20ZnO%20nanocrystals&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Oehrlein,%20Amanda%20N&rft.date=2019-03-27&rft.volume=21&rft.issue=13&rft.spage=6991&rft.epage=6998&rft.pages=6991-6998&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp00420c&rft_dat=%3Cproquest_osti_%3E2191354774%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197958668&rft_id=info:pmid/30869701&rfr_iscdi=true |