A higher order approximate static condensation method for multi-material diffusion problems
•We study a higher order approximate static condensation method.•The method is capable to handle multi-material problems with discontinuous interfaces.•We allow general polygonal meshes and unfitted interfaces.•A mimetic discretization is applied for local problems. The paper studies an approximate...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2019-10, Vol.395, p.333-350 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | |
container_start_page | 333 |
container_title | Journal of computational physics |
container_volume | 395 |
creator | Zhiliakov, Alexander Svyatskiy, Daniil Olshanskii, Maxim Kikinzon, Evgeny Shashkov, Mikhail |
description | •We study a higher order approximate static condensation method.•The method is capable to handle multi-material problems with discontinuous interfaces.•We allow general polygonal meshes and unfitted interfaces.•A mimetic discretization is applied for local problems.
The paper studies an approximate static condensation method for the diffusion problem with discontinuous diffusion coefficients. The method allows for a general polygonal mesh which is unfitted to the material interfaces. Moreover, the interfaces can be discontinuous across the mesh edges as typical for numerical reconstructions using the volume or moment-of-fluid methods. We apply a mimetic finite difference method to solve local diffusion problems and use P1 (mortar) edge elements to couple local problems into the global system. The condensation process and the properties of the resulting algebraic system are discussed. It is demonstrated that the method is second order accurate on smooth solutions and performs well for problems with high contrast in diffusion coefficients. Experiments also show the robustness with respect to position of the material interfaces against the underlying mesh. |
doi_str_mv | 10.1016/j.jcp.2019.06.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1497996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119304528</els_id><sourcerecordid>2282429090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-4b5b6cfd0ffa4a3ebe487f7cd10d44522b833372552b8d1b37f2e21598b60bc73</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjA-giqBPGjvOwqFYrXtJKNFBRWIk9Zh3txovtRfD3OAo1jT3FuaM7h5ArCgUFWt8OxaD2BQMqCqgL4PyILCgIyFlD62OyAGA0F0LQU3IWwgAAbcXbBXlfZhv7sUGfOa_T2-333n3bXRcxC7GLVmXKjRrHkGY3ZjuMG6cz43y2O2yjzSfS226baWvMIUxM2tBvcRcuyInptgEv__5z8vZw_7p6ytcvj8-r5TpXpahizvuqr5XRYEzHuxJ75G1jGqUpaM4rxvq2LMuGVVWaNO3LxjBktBJtX0OvmvKcXM97XYhWBmUjqk1qPaKKknLRCFEn6GaGUrvPA4YoB3fwY-olGWsZZyLZShSdKeVdCB6N3Pskw_9ICnISLQeZRMtJtIRaJtEpczdnMN34ZdFPFXBUqK2fGmhn_0n_AhWXhsI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282429090</pqid></control><display><type>article</type><title>A higher order approximate static condensation method for multi-material diffusion problems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhiliakov, Alexander ; Svyatskiy, Daniil ; Olshanskii, Maxim ; Kikinzon, Evgeny ; Shashkov, Mikhail</creator><creatorcontrib>Zhiliakov, Alexander ; Svyatskiy, Daniil ; Olshanskii, Maxim ; Kikinzon, Evgeny ; Shashkov, Mikhail ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>•We study a higher order approximate static condensation method.•The method is capable to handle multi-material problems with discontinuous interfaces.•We allow general polygonal meshes and unfitted interfaces.•A mimetic discretization is applied for local problems.
The paper studies an approximate static condensation method for the diffusion problem with discontinuous diffusion coefficients. The method allows for a general polygonal mesh which is unfitted to the material interfaces. Moreover, the interfaces can be discontinuous across the mesh edges as typical for numerical reconstructions using the volume or moment-of-fluid methods. We apply a mimetic finite difference method to solve local diffusion problems and use P1 (mortar) edge elements to couple local problems into the global system. The condensation process and the properties of the resulting algebraic system are discussed. It is demonstrated that the method is second order accurate on smooth solutions and performs well for problems with high contrast in diffusion coefficients. Experiments also show the robustness with respect to position of the material interfaces against the underlying mesh.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.06.044</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Approximate static condensation method ; Computational physics ; Condensates ; Diffusion ; Finite difference method ; High contrast diffusion coefficients ; Mathematics ; Mimetic finite differences ; Mortars (material) ; Robustness (mathematics) ; Unfitted meshes ; Volume-of-fluid method</subject><ispartof>Journal of computational physics, 2019-10, Vol.395, p.333-350</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-4b5b6cfd0ffa4a3ebe487f7cd10d44522b833372552b8d1b37f2e21598b60bc73</citedby><cites>FETCH-LOGICAL-c395t-4b5b6cfd0ffa4a3ebe487f7cd10d44522b833372552b8d1b37f2e21598b60bc73</cites><orcidid>0000-0003-4761-2015 ; 0000-0001-5290-7083 ; 0000000152907083 ; 0000000347612015 ; 0000000226888410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2019.06.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,314,780,784,789,885,3548,23929,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1497996$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhiliakov, Alexander</creatorcontrib><creatorcontrib>Svyatskiy, Daniil</creatorcontrib><creatorcontrib>Olshanskii, Maxim</creatorcontrib><creatorcontrib>Kikinzon, Evgeny</creatorcontrib><creatorcontrib>Shashkov, Mikhail</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>A higher order approximate static condensation method for multi-material diffusion problems</title><title>Journal of computational physics</title><description>•We study a higher order approximate static condensation method.•The method is capable to handle multi-material problems with discontinuous interfaces.•We allow general polygonal meshes and unfitted interfaces.•A mimetic discretization is applied for local problems.
The paper studies an approximate static condensation method for the diffusion problem with discontinuous diffusion coefficients. The method allows for a general polygonal mesh which is unfitted to the material interfaces. Moreover, the interfaces can be discontinuous across the mesh edges as typical for numerical reconstructions using the volume or moment-of-fluid methods. We apply a mimetic finite difference method to solve local diffusion problems and use P1 (mortar) edge elements to couple local problems into the global system. The condensation process and the properties of the resulting algebraic system are discussed. It is demonstrated that the method is second order accurate on smooth solutions and performs well for problems with high contrast in diffusion coefficients. Experiments also show the robustness with respect to position of the material interfaces against the underlying mesh.</description><subject>Approximate static condensation method</subject><subject>Computational physics</subject><subject>Condensates</subject><subject>Diffusion</subject><subject>Finite difference method</subject><subject>High contrast diffusion coefficients</subject><subject>Mathematics</subject><subject>Mimetic finite differences</subject><subject>Mortars (material)</subject><subject>Robustness (mathematics)</subject><subject>Unfitted meshes</subject><subject>Volume-of-fluid method</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjA-giqBPGjvOwqFYrXtJKNFBRWIk9Zh3txovtRfD3OAo1jT3FuaM7h5ArCgUFWt8OxaD2BQMqCqgL4PyILCgIyFlD62OyAGA0F0LQU3IWwgAAbcXbBXlfZhv7sUGfOa_T2-333n3bXRcxC7GLVmXKjRrHkGY3ZjuMG6cz43y2O2yjzSfS226baWvMIUxM2tBvcRcuyInptgEv__5z8vZw_7p6ytcvj8-r5TpXpahizvuqr5XRYEzHuxJ75G1jGqUpaM4rxvq2LMuGVVWaNO3LxjBktBJtX0OvmvKcXM97XYhWBmUjqk1qPaKKknLRCFEn6GaGUrvPA4YoB3fwY-olGWsZZyLZShSdKeVdCB6N3Pskw_9ICnISLQeZRMtJtIRaJtEpczdnMN34ZdFPFXBUqK2fGmhn_0n_AhWXhsI</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Zhiliakov, Alexander</creator><creator>Svyatskiy, Daniil</creator><creator>Olshanskii, Maxim</creator><creator>Kikinzon, Evgeny</creator><creator>Shashkov, Mikhail</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4761-2015</orcidid><orcidid>https://orcid.org/0000-0001-5290-7083</orcidid><orcidid>https://orcid.org/0000000152907083</orcidid><orcidid>https://orcid.org/0000000347612015</orcidid><orcidid>https://orcid.org/0000000226888410</orcidid></search><sort><creationdate>20191015</creationdate><title>A higher order approximate static condensation method for multi-material diffusion problems</title><author>Zhiliakov, Alexander ; Svyatskiy, Daniil ; Olshanskii, Maxim ; Kikinzon, Evgeny ; Shashkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-4b5b6cfd0ffa4a3ebe487f7cd10d44522b833372552b8d1b37f2e21598b60bc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximate static condensation method</topic><topic>Computational physics</topic><topic>Condensates</topic><topic>Diffusion</topic><topic>Finite difference method</topic><topic>High contrast diffusion coefficients</topic><topic>Mathematics</topic><topic>Mimetic finite differences</topic><topic>Mortars (material)</topic><topic>Robustness (mathematics)</topic><topic>Unfitted meshes</topic><topic>Volume-of-fluid method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhiliakov, Alexander</creatorcontrib><creatorcontrib>Svyatskiy, Daniil</creatorcontrib><creatorcontrib>Olshanskii, Maxim</creatorcontrib><creatorcontrib>Kikinzon, Evgeny</creatorcontrib><creatorcontrib>Shashkov, Mikhail</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhiliakov, Alexander</au><au>Svyatskiy, Daniil</au><au>Olshanskii, Maxim</au><au>Kikinzon, Evgeny</au><au>Shashkov, Mikhail</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A higher order approximate static condensation method for multi-material diffusion problems</atitle><jtitle>Journal of computational physics</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>395</volume><spage>333</spage><epage>350</epage><pages>333-350</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•We study a higher order approximate static condensation method.•The method is capable to handle multi-material problems with discontinuous interfaces.•We allow general polygonal meshes and unfitted interfaces.•A mimetic discretization is applied for local problems.
The paper studies an approximate static condensation method for the diffusion problem with discontinuous diffusion coefficients. The method allows for a general polygonal mesh which is unfitted to the material interfaces. Moreover, the interfaces can be discontinuous across the mesh edges as typical for numerical reconstructions using the volume or moment-of-fluid methods. We apply a mimetic finite difference method to solve local diffusion problems and use P1 (mortar) edge elements to couple local problems into the global system. The condensation process and the properties of the resulting algebraic system are discussed. It is demonstrated that the method is second order accurate on smooth solutions and performs well for problems with high contrast in diffusion coefficients. Experiments also show the robustness with respect to position of the material interfaces against the underlying mesh.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.06.044</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4761-2015</orcidid><orcidid>https://orcid.org/0000-0001-5290-7083</orcidid><orcidid>https://orcid.org/0000000152907083</orcidid><orcidid>https://orcid.org/0000000347612015</orcidid><orcidid>https://orcid.org/0000000226888410</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2019-10, Vol.395, p.333-350 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1497996 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Approximate static condensation method Computational physics Condensates Diffusion Finite difference method High contrast diffusion coefficients Mathematics Mimetic finite differences Mortars (material) Robustness (mathematics) Unfitted meshes Volume-of-fluid method |
title | A higher order approximate static condensation method for multi-material diffusion problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20higher%20order%20approximate%20static%20condensation%20method%20for%20multi-material%20diffusion%20problems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Zhiliakov,%20Alexander&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-10-15&rft.volume=395&rft.spage=333&rft.epage=350&rft.pages=333-350&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.06.044&rft_dat=%3Cproquest_osti_%3E2282429090%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282429090&rft_id=info:pmid/&rft_els_id=S0021999119304528&rfr_iscdi=true |