Test Results of the CERN HL-LHC Low-[Formula Omitted] Quadrupole Short Models MQXFS3c and MQXFS4
For the high luminosity upgrade of the CERN large hadron collider, lower [Formula Omitted]* quadrupole magnets based on advanced Nb[Formula Omitted]Sn conductors will be installed on each side of the ATLAS and compact muon solenoid (CMS) experiment insertion zones. As part of the technological devel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2019-02, Vol.29 (5), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 29 |
creator | Mangiarotti, Franco Bajas, Hugues Ambrosio, Giorgio Bajko, Marta Bordini, Bernardo Bourcey, Nicolas Duda, Michal Desbiolles, Vincent Feuvrier, Jerome Fleiter, Jerome Susana Izquierdo Bermudez Chiuchiolo, Antonella Devred, Arnaud Ferracin, Paolo Fiscarelli, Lucio Mentink, Matthias Nobrega, Alfred Pepitone, Kevin Ravaioli, Emmanuele Schmalzle, Jesse Todesco, Ezio Perez, Juan Carlos Vallone, Giorgio Willering, Gerard Yu, Miao |
description | For the high luminosity upgrade of the CERN large hadron collider, lower [Formula Omitted]* quadrupole magnets based on advanced Nb[Formula Omitted]Sn conductors will be installed on each side of the ATLAS and compact muon solenoid (CMS) experiment insertion zones. As part of the technological developments needed to achieve the required field gradient of 132.6 T/m within a 150-mm aperture, short length model magnets, named MQXFS, are tested both at the CERN SM18 and Fermilab test facilities. The model magnets rely on two types of Nb[Formula Omitted]Sn conductors (restack rod process (RRP) and powder-in-tube (PIT)) and on an innovative bladders and keys design to provide mechanical support against the Lorentz forces. In 2016 and 2017, the powering tests of the first two models MQXFS3 (RRP) and MQXFS5 (PIT) proved that nominal performance (16.5 kA) could be reached with excellent memory of the quench current after thermal cycle. However both magnets showed a slow training behavior with clear observations of voltage disturbances before the quench. Besides, only MQXFS5 could reach ultimate current (17.9 kA) whereas erratic behavior was observed on MQXFS3 due to conductor local degradation at the head of one of the coils. In 2018, this limiting coil was changed and the applied azimuthal prestress increased. While ultimate current could then be reached, no stable current could be maintained due to identified defect on the outer layer of the new coil. Finally the outcome of the test of the new model MQXFS4, featuring the final RRP conductors that will be used for the series production and variation on the inner layer quench heater designs are here reported in details. |
doi_str_mv | 10.1109/TASC.2019.2897229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1497713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187964940</sourcerecordid><originalsourceid>FETCH-LOGICAL-o550-139e70cc1101e4507f69379a0c14ee17b7379a495320cb82ffffdcec7856fe73</originalsourceid><addsrcrecordid>eNotT0tLw0AYXETBWv0B3hY9p-63j272WEIfQmpp04MgEtPNF9qSZmt2g3_fSJ3LzMAwzBDyCGwEwMzLdpIlI87AjHhsNOfmigxAqTjiCtR1r5mCKOZc3JI774-MgYylGpCvLfpAN-i7OnjqKhr2SJPp5o0u0ihdJDR1P9HHzLWnri7o6nQIActPuu6Ksu3Orkaa7V0b6NKVWHu6XL_PMmFp0ZQXLe_JTVXUHh_-eUiy2XSbLKJ0NX9NJmnklGIRCIOaWdt_AZSK6WpshDYFsyARQe_0n5NGCc7sLuZVj9Ki1bEaV6jFkDxdWp0Ph9zbQ0C7t65p0IYcpNEaRB96voTOrfvu-t_50XVt06_KOcTajKWRTPwC_bFfGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187964940</pqid></control><display><type>article</type><title>Test Results of the CERN HL-LHC Low-[Formula Omitted] Quadrupole Short Models MQXFS3c and MQXFS4</title><source>IEEE Electronic Library (IEL)</source><creator>Mangiarotti, Franco ; Bajas, Hugues ; Ambrosio, Giorgio ; Bajko, Marta ; Bordini, Bernardo ; Bourcey, Nicolas ; Duda, Michal ; Desbiolles, Vincent ; Feuvrier, Jerome ; Fleiter, Jerome ; Susana Izquierdo Bermudez ; Chiuchiolo, Antonella ; Devred, Arnaud ; Ferracin, Paolo ; Fiscarelli, Lucio ; Mentink, Matthias ; Nobrega, Alfred ; Pepitone, Kevin ; Ravaioli, Emmanuele ; Schmalzle, Jesse ; Todesco, Ezio ; Perez, Juan Carlos ; Vallone, Giorgio ; Willering, Gerard ; Yu, Miao</creator><creatorcontrib>Mangiarotti, Franco ; Bajas, Hugues ; Ambrosio, Giorgio ; Bajko, Marta ; Bordini, Bernardo ; Bourcey, Nicolas ; Duda, Michal ; Desbiolles, Vincent ; Feuvrier, Jerome ; Fleiter, Jerome ; Susana Izquierdo Bermudez ; Chiuchiolo, Antonella ; Devred, Arnaud ; Ferracin, Paolo ; Fiscarelli, Lucio ; Mentink, Matthias ; Nobrega, Alfred ; Pepitone, Kevin ; Ravaioli, Emmanuele ; Schmalzle, Jesse ; Todesco, Ezio ; Perez, Juan Carlos ; Vallone, Giorgio ; Willering, Gerard ; Yu, Miao ; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>For the high luminosity upgrade of the CERN large hadron collider, lower [Formula Omitted]* quadrupole magnets based on advanced Nb[Formula Omitted]Sn conductors will be installed on each side of the ATLAS and compact muon solenoid (CMS) experiment insertion zones. As part of the technological developments needed to achieve the required field gradient of 132.6 T/m within a 150-mm aperture, short length model magnets, named MQXFS, are tested both at the CERN SM18 and Fermilab test facilities. The model magnets rely on two types of Nb[Formula Omitted]Sn conductors (restack rod process (RRP) and powder-in-tube (PIT)) and on an innovative bladders and keys design to provide mechanical support against the Lorentz forces. In 2016 and 2017, the powering tests of the first two models MQXFS3 (RRP) and MQXFS5 (PIT) proved that nominal performance (16.5 kA) could be reached with excellent memory of the quench current after thermal cycle. However both magnets showed a slow training behavior with clear observations of voltage disturbances before the quench. Besides, only MQXFS5 could reach ultimate current (17.9 kA) whereas erratic behavior was observed on MQXFS3 due to conductor local degradation at the head of one of the coils. In 2018, this limiting coil was changed and the applied azimuthal prestress increased. While ultimate current could then be reached, no stable current could be maintained due to identified defect on the outer layer of the new coil. Finally the outcome of the test of the new model MQXFS4, featuring the final RRP conductors that will be used for the series production and variation on the inner layer quench heater designs are here reported in details.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2897229</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Apertures ; CERN ; Coils ; Conductors ; Large Hadron Collider ; Luminosity ; Magnets ; Model testing ; PARTICLE ACCELERATORS ; Prestressing ; Quadrupoles ; Solenoids ; Test facilities</subject><ispartof>IEEE transactions on applied superconductivity, 2019-02, Vol.29 (5), p.1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1497713$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangiarotti, Franco</creatorcontrib><creatorcontrib>Bajas, Hugues</creatorcontrib><creatorcontrib>Ambrosio, Giorgio</creatorcontrib><creatorcontrib>Bajko, Marta</creatorcontrib><creatorcontrib>Bordini, Bernardo</creatorcontrib><creatorcontrib>Bourcey, Nicolas</creatorcontrib><creatorcontrib>Duda, Michal</creatorcontrib><creatorcontrib>Desbiolles, Vincent</creatorcontrib><creatorcontrib>Feuvrier, Jerome</creatorcontrib><creatorcontrib>Fleiter, Jerome</creatorcontrib><creatorcontrib>Susana Izquierdo Bermudez</creatorcontrib><creatorcontrib>Chiuchiolo, Antonella</creatorcontrib><creatorcontrib>Devred, Arnaud</creatorcontrib><creatorcontrib>Ferracin, Paolo</creatorcontrib><creatorcontrib>Fiscarelli, Lucio</creatorcontrib><creatorcontrib>Mentink, Matthias</creatorcontrib><creatorcontrib>Nobrega, Alfred</creatorcontrib><creatorcontrib>Pepitone, Kevin</creatorcontrib><creatorcontrib>Ravaioli, Emmanuele</creatorcontrib><creatorcontrib>Schmalzle, Jesse</creatorcontrib><creatorcontrib>Todesco, Ezio</creatorcontrib><creatorcontrib>Perez, Juan Carlos</creatorcontrib><creatorcontrib>Vallone, Giorgio</creatorcontrib><creatorcontrib>Willering, Gerard</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Test Results of the CERN HL-LHC Low-[Formula Omitted] Quadrupole Short Models MQXFS3c and MQXFS4</title><title>IEEE transactions on applied superconductivity</title><description>For the high luminosity upgrade of the CERN large hadron collider, lower [Formula Omitted]* quadrupole magnets based on advanced Nb[Formula Omitted]Sn conductors will be installed on each side of the ATLAS and compact muon solenoid (CMS) experiment insertion zones. As part of the technological developments needed to achieve the required field gradient of 132.6 T/m within a 150-mm aperture, short length model magnets, named MQXFS, are tested both at the CERN SM18 and Fermilab test facilities. The model magnets rely on two types of Nb[Formula Omitted]Sn conductors (restack rod process (RRP) and powder-in-tube (PIT)) and on an innovative bladders and keys design to provide mechanical support against the Lorentz forces. In 2016 and 2017, the powering tests of the first two models MQXFS3 (RRP) and MQXFS5 (PIT) proved that nominal performance (16.5 kA) could be reached with excellent memory of the quench current after thermal cycle. However both magnets showed a slow training behavior with clear observations of voltage disturbances before the quench. Besides, only MQXFS5 could reach ultimate current (17.9 kA) whereas erratic behavior was observed on MQXFS3 due to conductor local degradation at the head of one of the coils. In 2018, this limiting coil was changed and the applied azimuthal prestress increased. While ultimate current could then be reached, no stable current could be maintained due to identified defect on the outer layer of the new coil. Finally the outcome of the test of the new model MQXFS4, featuring the final RRP conductors that will be used for the series production and variation on the inner layer quench heater designs are here reported in details.</description><subject>Apertures</subject><subject>CERN</subject><subject>Coils</subject><subject>Conductors</subject><subject>Large Hadron Collider</subject><subject>Luminosity</subject><subject>Magnets</subject><subject>Model testing</subject><subject>PARTICLE ACCELERATORS</subject><subject>Prestressing</subject><subject>Quadrupoles</subject><subject>Solenoids</subject><subject>Test facilities</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotT0tLw0AYXETBWv0B3hY9p-63j272WEIfQmpp04MgEtPNF9qSZmt2g3_fSJ3LzMAwzBDyCGwEwMzLdpIlI87AjHhsNOfmigxAqTjiCtR1r5mCKOZc3JI774-MgYylGpCvLfpAN-i7OnjqKhr2SJPp5o0u0ihdJDR1P9HHzLWnri7o6nQIActPuu6Ksu3Orkaa7V0b6NKVWHu6XL_PMmFp0ZQXLe_JTVXUHh_-eUiy2XSbLKJ0NX9NJmnklGIRCIOaWdt_AZSK6WpshDYFsyARQe_0n5NGCc7sLuZVj9Ki1bEaV6jFkDxdWp0Ph9zbQ0C7t65p0IYcpNEaRB96voTOrfvu-t_50XVt06_KOcTajKWRTPwC_bFfGw</recordid><startdate>20190204</startdate><enddate>20190204</enddate><creator>Mangiarotti, Franco</creator><creator>Bajas, Hugues</creator><creator>Ambrosio, Giorgio</creator><creator>Bajko, Marta</creator><creator>Bordini, Bernardo</creator><creator>Bourcey, Nicolas</creator><creator>Duda, Michal</creator><creator>Desbiolles, Vincent</creator><creator>Feuvrier, Jerome</creator><creator>Fleiter, Jerome</creator><creator>Susana Izquierdo Bermudez</creator><creator>Chiuchiolo, Antonella</creator><creator>Devred, Arnaud</creator><creator>Ferracin, Paolo</creator><creator>Fiscarelli, Lucio</creator><creator>Mentink, Matthias</creator><creator>Nobrega, Alfred</creator><creator>Pepitone, Kevin</creator><creator>Ravaioli, Emmanuele</creator><creator>Schmalzle, Jesse</creator><creator>Todesco, Ezio</creator><creator>Perez, Juan Carlos</creator><creator>Vallone, Giorgio</creator><creator>Willering, Gerard</creator><creator>Yu, Miao</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190204</creationdate><title>Test Results of the CERN HL-LHC Low-[Formula Omitted] Quadrupole Short Models MQXFS3c and MQXFS4</title><author>Mangiarotti, Franco ; Bajas, Hugues ; Ambrosio, Giorgio ; Bajko, Marta ; Bordini, Bernardo ; Bourcey, Nicolas ; Duda, Michal ; Desbiolles, Vincent ; Feuvrier, Jerome ; Fleiter, Jerome ; Susana Izquierdo Bermudez ; Chiuchiolo, Antonella ; Devred, Arnaud ; Ferracin, Paolo ; Fiscarelli, Lucio ; Mentink, Matthias ; Nobrega, Alfred ; Pepitone, Kevin ; Ravaioli, Emmanuele ; Schmalzle, Jesse ; Todesco, Ezio ; Perez, Juan Carlos ; Vallone, Giorgio ; Willering, Gerard ; Yu, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o550-139e70cc1101e4507f69379a0c14ee17b7379a495320cb82ffffdcec7856fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apertures</topic><topic>CERN</topic><topic>Coils</topic><topic>Conductors</topic><topic>Large Hadron Collider</topic><topic>Luminosity</topic><topic>Magnets</topic><topic>Model testing</topic><topic>PARTICLE ACCELERATORS</topic><topic>Prestressing</topic><topic>Quadrupoles</topic><topic>Solenoids</topic><topic>Test facilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangiarotti, Franco</creatorcontrib><creatorcontrib>Bajas, Hugues</creatorcontrib><creatorcontrib>Ambrosio, Giorgio</creatorcontrib><creatorcontrib>Bajko, Marta</creatorcontrib><creatorcontrib>Bordini, Bernardo</creatorcontrib><creatorcontrib>Bourcey, Nicolas</creatorcontrib><creatorcontrib>Duda, Michal</creatorcontrib><creatorcontrib>Desbiolles, Vincent</creatorcontrib><creatorcontrib>Feuvrier, Jerome</creatorcontrib><creatorcontrib>Fleiter, Jerome</creatorcontrib><creatorcontrib>Susana Izquierdo Bermudez</creatorcontrib><creatorcontrib>Chiuchiolo, Antonella</creatorcontrib><creatorcontrib>Devred, Arnaud</creatorcontrib><creatorcontrib>Ferracin, Paolo</creatorcontrib><creatorcontrib>Fiscarelli, Lucio</creatorcontrib><creatorcontrib>Mentink, Matthias</creatorcontrib><creatorcontrib>Nobrega, Alfred</creatorcontrib><creatorcontrib>Pepitone, Kevin</creatorcontrib><creatorcontrib>Ravaioli, Emmanuele</creatorcontrib><creatorcontrib>Schmalzle, Jesse</creatorcontrib><creatorcontrib>Todesco, Ezio</creatorcontrib><creatorcontrib>Perez, Juan Carlos</creatorcontrib><creatorcontrib>Vallone, Giorgio</creatorcontrib><creatorcontrib>Willering, Gerard</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangiarotti, Franco</au><au>Bajas, Hugues</au><au>Ambrosio, Giorgio</au><au>Bajko, Marta</au><au>Bordini, Bernardo</au><au>Bourcey, Nicolas</au><au>Duda, Michal</au><au>Desbiolles, Vincent</au><au>Feuvrier, Jerome</au><au>Fleiter, Jerome</au><au>Susana Izquierdo Bermudez</au><au>Chiuchiolo, Antonella</au><au>Devred, Arnaud</au><au>Ferracin, Paolo</au><au>Fiscarelli, Lucio</au><au>Mentink, Matthias</au><au>Nobrega, Alfred</au><au>Pepitone, Kevin</au><au>Ravaioli, Emmanuele</au><au>Schmalzle, Jesse</au><au>Todesco, Ezio</au><au>Perez, Juan Carlos</au><au>Vallone, Giorgio</au><au>Willering, Gerard</au><au>Yu, Miao</au><aucorp>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test Results of the CERN HL-LHC Low-[Formula Omitted] Quadrupole Short Models MQXFS3c and MQXFS4</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><date>2019-02-04</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><pages>1-</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><abstract>For the high luminosity upgrade of the CERN large hadron collider, lower [Formula Omitted]* quadrupole magnets based on advanced Nb[Formula Omitted]Sn conductors will be installed on each side of the ATLAS and compact muon solenoid (CMS) experiment insertion zones. As part of the technological developments needed to achieve the required field gradient of 132.6 T/m within a 150-mm aperture, short length model magnets, named MQXFS, are tested both at the CERN SM18 and Fermilab test facilities. The model magnets rely on two types of Nb[Formula Omitted]Sn conductors (restack rod process (RRP) and powder-in-tube (PIT)) and on an innovative bladders and keys design to provide mechanical support against the Lorentz forces. In 2016 and 2017, the powering tests of the first two models MQXFS3 (RRP) and MQXFS5 (PIT) proved that nominal performance (16.5 kA) could be reached with excellent memory of the quench current after thermal cycle. However both magnets showed a slow training behavior with clear observations of voltage disturbances before the quench. Besides, only MQXFS5 could reach ultimate current (17.9 kA) whereas erratic behavior was observed on MQXFS3 due to conductor local degradation at the head of one of the coils. In 2018, this limiting coil was changed and the applied azimuthal prestress increased. While ultimate current could then be reached, no stable current could be maintained due to identified defect on the outer layer of the new coil. Finally the outcome of the test of the new model MQXFS4, featuring the final RRP conductors that will be used for the series production and variation on the inner layer quench heater designs are here reported in details.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TASC.2019.2897229</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2019-02, Vol.29 (5), p.1 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_osti_scitechconnect_1497713 |
source | IEEE Electronic Library (IEL) |
subjects | Apertures CERN Coils Conductors Large Hadron Collider Luminosity Magnets Model testing PARTICLE ACCELERATORS Prestressing Quadrupoles Solenoids Test facilities |
title | Test Results of the CERN HL-LHC Low-[Formula Omitted] Quadrupole Short Models MQXFS3c and MQXFS4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%20Results%20of%20the%20CERN%20HL-LHC%20Low-%5BFormula%20Omitted%5D%20Quadrupole%20Short%20Models%20MQXFS3c%20and%20MQXFS4&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Mangiarotti,%20Franco&rft.aucorp=Fermi%20National%20Accelerator%20Lab.%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2019-02-04&rft.volume=29&rft.issue=5&rft.spage=1&rft.pages=1-&rft.issn=1051-8223&rft.eissn=1558-2515&rft_id=info:doi/10.1109/TASC.2019.2897229&rft_dat=%3Cproquest_osti_%3E2187964940%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187964940&rft_id=info:pmid/&rfr_iscdi=true |