Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335
Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently b...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2016-06, Vol.1857 (6), p.688-694 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 |
---|---|
container_issue | 6 |
container_start_page | 688 |
container_title | Biochimica et biophysica acta |
container_volume | 1857 |
creator | Miao, Dan Ding, Wen-Long Zhao, Bao-Qing Lu, Lu Xu, Qian-Zhao Scheer, Hugo Zhao, Kai-Hong |
description | Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700nm and fluorescing >710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation.
•Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores. |
doi_str_mv | 10.1016/j.bbabio.2016.03.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1497187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272816300809</els_id><sourcerecordid>1789497615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</originalsourceid><addsrcrecordid>eNp9kduKFDEQhhtR3HH1DUSCV950W-n0YdoLYRk8wYKCeh1yqHYydidjkhnsx_PNrHZWL4VAEvL9f1XqL4qnHCoOvHt5qLRW2oWqplsFgpa4V2z4th_KumvhfrEBgLas-3p7VTxK6QAENrV4WFzVPTQtNN2m-HVj1TE7_40d9yGHtPi8x-QSy4HRiXlUsXR-jCqifcV88KUJZzWhz0w7b1dlGEm8mGAW5YN2k_PsGMPZWUxMeYY_c8QZWTqiyVFNjJzKtHdjXov8Ua6iFIgxIWI546yj8sjI6TtGNsYws8-LR7MPVMWcEnlV7NNu1wvRPi4ejGpK-ORuvy6-vn3zZfe-vP347sPu5rY0jWhz2WrAoW-VtaAUYCN6Yw0o3Wrb1VAjcj3QKwjNcVTD1gIq3dcwcAFNr6y4Lp5ffEPKTibjMvVjgqe2suTN0NPkCXpxgWgAP06YspxdMjhN9J1wSpL324HQjreENhfUxJBSxFEeo5tVXCQHuSYsD_KSsFwTliBoCZI9u6tw0jPaf6K_kRLw-gIgDePsMK69ojdoXVxbtcH9v8Jva7G97Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789497615</pqid></control><display><type>article</type><title>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Miao, Dan ; Ding, Wen-Long ; Zhao, Bao-Qing ; Lu, Lu ; Xu, Qian-Zhao ; Scheer, Hugo ; Zhao, Kai-Hong</creator><creatorcontrib>Miao, Dan ; Ding, Wen-Long ; Zhao, Bao-Qing ; Lu, Lu ; Xu, Qian-Zhao ; Scheer, Hugo ; Zhao, Kai-Hong ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700nm and fluorescing >710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation.
•Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores.</description><identifier>ISSN: 0005-2728</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2016.03.033</identifier><identifier>PMID: 27045046</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Core-membrane linker ; Cyanobacteria ; Escherichia coli - genetics ; Fluorescence biolabel ; Microscopy, Fluorescence ; Models, Molecular ; Photosynthesis ; Phycobilins - chemistry ; Phycobilins - genetics ; Phycobilins - metabolism ; Phycobilisome ; Phycobilisomes - metabolism ; Phycocyanin - chemistry ; Phycocyanin - genetics ; Phycocyanin - metabolism ; Phycocyanobilin ; Phycoerythrin - chemistry ; Phycoerythrin - genetics ; Phycoerythrin - metabolism ; Phycoerythrobilin ; Phytochromobilin ; Protein Multimerization ; Protein Structure, Tertiary ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Spectral tuning ; Spectrometry, Fluorescence ; Synechococcus - genetics ; Synechococcus - metabolism</subject><ispartof>Biochimica et biophysica acta, 2016-06, Vol.1857 (6), p.688-694</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</citedby><cites>FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005272816300809$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27045046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1497187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Dan</creatorcontrib><creatorcontrib>Ding, Wen-Long</creatorcontrib><creatorcontrib>Zhao, Bao-Qing</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xu, Qian-Zhao</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Zhao, Kai-Hong</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700nm and fluorescing >710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation.
•Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Core-membrane linker</subject><subject>Cyanobacteria</subject><subject>Escherichia coli - genetics</subject><subject>Fluorescence biolabel</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>Photosynthesis</subject><subject>Phycobilins - chemistry</subject><subject>Phycobilins - genetics</subject><subject>Phycobilins - metabolism</subject><subject>Phycobilisome</subject><subject>Phycobilisomes - metabolism</subject><subject>Phycocyanin - chemistry</subject><subject>Phycocyanin - genetics</subject><subject>Phycocyanin - metabolism</subject><subject>Phycocyanobilin</subject><subject>Phycoerythrin - chemistry</subject><subject>Phycoerythrin - genetics</subject><subject>Phycoerythrin - metabolism</subject><subject>Phycoerythrobilin</subject><subject>Phytochromobilin</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Spectral tuning</subject><subject>Spectrometry, Fluorescence</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><issn>0005-2728</issn><issn>0006-3002</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kduKFDEQhhtR3HH1DUSCV950W-n0YdoLYRk8wYKCeh1yqHYydidjkhnsx_PNrHZWL4VAEvL9f1XqL4qnHCoOvHt5qLRW2oWqplsFgpa4V2z4th_KumvhfrEBgLas-3p7VTxK6QAENrV4WFzVPTQtNN2m-HVj1TE7_40d9yGHtPi8x-QSy4HRiXlUsXR-jCqifcV88KUJZzWhz0w7b1dlGEm8mGAW5YN2k_PsGMPZWUxMeYY_c8QZWTqiyVFNjJzKtHdjXov8Ua6iFIgxIWI546yj8sjI6TtGNsYws8-LR7MPVMWcEnlV7NNu1wvRPi4ejGpK-ORuvy6-vn3zZfe-vP347sPu5rY0jWhz2WrAoW-VtaAUYCN6Yw0o3Wrb1VAjcj3QKwjNcVTD1gIq3dcwcAFNr6y4Lp5ffEPKTibjMvVjgqe2suTN0NPkCXpxgWgAP06YspxdMjhN9J1wSpL324HQjreENhfUxJBSxFEeo5tVXCQHuSYsD_KSsFwTliBoCZI9u6tw0jPaf6K_kRLw-gIgDePsMK69ojdoXVxbtcH9v8Jva7G97Q</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Miao, Dan</creator><creator>Ding, Wen-Long</creator><creator>Zhao, Bao-Qing</creator><creator>Lu, Lu</creator><creator>Xu, Qian-Zhao</creator><creator>Scheer, Hugo</creator><creator>Zhao, Kai-Hong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201606</creationdate><title>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</title><author>Miao, Dan ; Ding, Wen-Long ; Zhao, Bao-Qing ; Lu, Lu ; Xu, Qian-Zhao ; Scheer, Hugo ; Zhao, Kai-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Core-membrane linker</topic><topic>Cyanobacteria</topic><topic>Escherichia coli - genetics</topic><topic>Fluorescence biolabel</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>Photosynthesis</topic><topic>Phycobilins - chemistry</topic><topic>Phycobilins - genetics</topic><topic>Phycobilins - metabolism</topic><topic>Phycobilisome</topic><topic>Phycobilisomes - metabolism</topic><topic>Phycocyanin - chemistry</topic><topic>Phycocyanin - genetics</topic><topic>Phycocyanin - metabolism</topic><topic>Phycocyanobilin</topic><topic>Phycoerythrin - chemistry</topic><topic>Phycoerythrin - genetics</topic><topic>Phycoerythrin - metabolism</topic><topic>Phycoerythrobilin</topic><topic>Phytochromobilin</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Spectral tuning</topic><topic>Spectrometry, Fluorescence</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Dan</creatorcontrib><creatorcontrib>Ding, Wen-Long</creatorcontrib><creatorcontrib>Zhao, Bao-Qing</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xu, Qian-Zhao</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Zhao, Kai-Hong</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Dan</au><au>Ding, Wen-Long</au><au>Zhao, Bao-Qing</au><au>Lu, Lu</au><au>Xu, Qian-Zhao</au><au>Scheer, Hugo</au><au>Zhao, Kai-Hong</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2016-06</date><risdate>2016</risdate><volume>1857</volume><issue>6</issue><spage>688</spage><epage>694</epage><pages>688-694</pages><issn>0005-2728</issn><issn>0006-3002</issn><eissn>1879-2650</eissn><abstract>Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700nm and fluorescing >710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation.
•Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27045046</pmid><doi>10.1016/j.bbabio.2016.03.033</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-2728 |
ispartof | Biochimica et biophysica acta, 2016-06, Vol.1857 (6), p.688-694 |
issn | 0005-2728 0006-3002 1879-2650 |
language | eng |
recordid | cdi_osti_scitechconnect_1497187 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Core-membrane linker Cyanobacteria Escherichia coli - genetics Fluorescence biolabel Microscopy, Fluorescence Models, Molecular Photosynthesis Phycobilins - chemistry Phycobilins - genetics Phycobilins - metabolism Phycobilisome Phycobilisomes - metabolism Phycocyanin - chemistry Phycocyanin - genetics Phycocyanin - metabolism Phycocyanobilin Phycoerythrin - chemistry Phycoerythrin - genetics Phycoerythrin - metabolism Phycoerythrobilin Phytochromobilin Protein Multimerization Protein Structure, Tertiary Recombinant Proteins - chemistry Recombinant Proteins - metabolism Spectral tuning Spectrometry, Fluorescence Synechococcus - genetics Synechococcus - metabolism |
title | Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapting%20photosynthesis%20to%20the%20near-infrared:%20non-covalent%20binding%20of%20phycocyanobilin%20provides%20an%20extreme%20spectral%20red-shift%20to%20phycobilisome%20core-membrane%20linker%20from%20Synechococcus%20sp.%20PCC7335&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Miao,%20Dan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-06&rft.volume=1857&rft.issue=6&rft.spage=688&rft.epage=694&rft.pages=688-694&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2016.03.033&rft_dat=%3Cproquest_osti_%3E1789497615%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789497615&rft_id=info:pmid/27045046&rft_els_id=S0005272816300809&rfr_iscdi=true |