Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335

Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2016-06, Vol.1857 (6), p.688-694
Hauptverfasser: Miao, Dan, Ding, Wen-Long, Zhao, Bao-Qing, Lu, Lu, Xu, Qian-Zhao, Scheer, Hugo, Zhao, Kai-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 6
container_start_page 688
container_title Biochimica et biophysica acta
container_volume 1857
creator Miao, Dan
Ding, Wen-Long
Zhao, Bao-Qing
Lu, Lu
Xu, Qian-Zhao
Scheer, Hugo
Zhao, Kai-Hong
description Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700nm and fluorescing >710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation. •Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores.
doi_str_mv 10.1016/j.bbabio.2016.03.033
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1497187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272816300809</els_id><sourcerecordid>1789497615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</originalsourceid><addsrcrecordid>eNp9kduKFDEQhhtR3HH1DUSCV950W-n0YdoLYRk8wYKCeh1yqHYydidjkhnsx_PNrHZWL4VAEvL9f1XqL4qnHCoOvHt5qLRW2oWqplsFgpa4V2z4th_KumvhfrEBgLas-3p7VTxK6QAENrV4WFzVPTQtNN2m-HVj1TE7_40d9yGHtPi8x-QSy4HRiXlUsXR-jCqifcV88KUJZzWhz0w7b1dlGEm8mGAW5YN2k_PsGMPZWUxMeYY_c8QZWTqiyVFNjJzKtHdjXov8Ua6iFIgxIWI546yj8sjI6TtGNsYws8-LR7MPVMWcEnlV7NNu1wvRPi4ejGpK-ORuvy6-vn3zZfe-vP347sPu5rY0jWhz2WrAoW-VtaAUYCN6Yw0o3Wrb1VAjcj3QKwjNcVTD1gIq3dcwcAFNr6y4Lp5ffEPKTibjMvVjgqe2suTN0NPkCXpxgWgAP06YspxdMjhN9J1wSpL324HQjreENhfUxJBSxFEeo5tVXCQHuSYsD_KSsFwTliBoCZI9u6tw0jPaf6K_kRLw-gIgDePsMK69ojdoXVxbtcH9v8Jva7G97Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789497615</pqid></control><display><type>article</type><title>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Miao, Dan ; Ding, Wen-Long ; Zhao, Bao-Qing ; Lu, Lu ; Xu, Qian-Zhao ; Scheer, Hugo ; Zhao, Kai-Hong</creator><creatorcontrib>Miao, Dan ; Ding, Wen-Long ; Zhao, Bao-Qing ; Lu, Lu ; Xu, Qian-Zhao ; Scheer, Hugo ; Zhao, Kai-Hong ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing &gt;700nm and fluorescing &gt;710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation. •Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores.</description><identifier>ISSN: 0005-2728</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2016.03.033</identifier><identifier>PMID: 27045046</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Core-membrane linker ; Cyanobacteria ; Escherichia coli - genetics ; Fluorescence biolabel ; Microscopy, Fluorescence ; Models, Molecular ; Photosynthesis ; Phycobilins - chemistry ; Phycobilins - genetics ; Phycobilins - metabolism ; Phycobilisome ; Phycobilisomes - metabolism ; Phycocyanin - chemistry ; Phycocyanin - genetics ; Phycocyanin - metabolism ; Phycocyanobilin ; Phycoerythrin - chemistry ; Phycoerythrin - genetics ; Phycoerythrin - metabolism ; Phycoerythrobilin ; Phytochromobilin ; Protein Multimerization ; Protein Structure, Tertiary ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Spectral tuning ; Spectrometry, Fluorescence ; Synechococcus - genetics ; Synechococcus - metabolism</subject><ispartof>Biochimica et biophysica acta, 2016-06, Vol.1857 (6), p.688-694</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</citedby><cites>FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005272816300809$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27045046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1497187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Dan</creatorcontrib><creatorcontrib>Ding, Wen-Long</creatorcontrib><creatorcontrib>Zhao, Bao-Qing</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xu, Qian-Zhao</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Zhao, Kai-Hong</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing &gt;700nm and fluorescing &gt;710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation. •Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Core-membrane linker</subject><subject>Cyanobacteria</subject><subject>Escherichia coli - genetics</subject><subject>Fluorescence biolabel</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>Photosynthesis</subject><subject>Phycobilins - chemistry</subject><subject>Phycobilins - genetics</subject><subject>Phycobilins - metabolism</subject><subject>Phycobilisome</subject><subject>Phycobilisomes - metabolism</subject><subject>Phycocyanin - chemistry</subject><subject>Phycocyanin - genetics</subject><subject>Phycocyanin - metabolism</subject><subject>Phycocyanobilin</subject><subject>Phycoerythrin - chemistry</subject><subject>Phycoerythrin - genetics</subject><subject>Phycoerythrin - metabolism</subject><subject>Phycoerythrobilin</subject><subject>Phytochromobilin</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Spectral tuning</subject><subject>Spectrometry, Fluorescence</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><issn>0005-2728</issn><issn>0006-3002</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kduKFDEQhhtR3HH1DUSCV950W-n0YdoLYRk8wYKCeh1yqHYydidjkhnsx_PNrHZWL4VAEvL9f1XqL4qnHCoOvHt5qLRW2oWqplsFgpa4V2z4th_KumvhfrEBgLas-3p7VTxK6QAENrV4WFzVPTQtNN2m-HVj1TE7_40d9yGHtPi8x-QSy4HRiXlUsXR-jCqifcV88KUJZzWhz0w7b1dlGEm8mGAW5YN2k_PsGMPZWUxMeYY_c8QZWTqiyVFNjJzKtHdjXov8Ua6iFIgxIWI546yj8sjI6TtGNsYws8-LR7MPVMWcEnlV7NNu1wvRPi4ejGpK-ORuvy6-vn3zZfe-vP347sPu5rY0jWhz2WrAoW-VtaAUYCN6Yw0o3Wrb1VAjcj3QKwjNcVTD1gIq3dcwcAFNr6y4Lp5ffEPKTibjMvVjgqe2suTN0NPkCXpxgWgAP06YspxdMjhN9J1wSpL324HQjreENhfUxJBSxFEeo5tVXCQHuSYsD_KSsFwTliBoCZI9u6tw0jPaf6K_kRLw-gIgDePsMK69ojdoXVxbtcH9v8Jva7G97Q</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Miao, Dan</creator><creator>Ding, Wen-Long</creator><creator>Zhao, Bao-Qing</creator><creator>Lu, Lu</creator><creator>Xu, Qian-Zhao</creator><creator>Scheer, Hugo</creator><creator>Zhao, Kai-Hong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201606</creationdate><title>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</title><author>Miao, Dan ; Ding, Wen-Long ; Zhao, Bao-Qing ; Lu, Lu ; Xu, Qian-Zhao ; Scheer, Hugo ; Zhao, Kai-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5b0e975add0aa0e437cdc0ab5bd6202ee1b95ad03b1efa98d0eab720913047ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Core-membrane linker</topic><topic>Cyanobacteria</topic><topic>Escherichia coli - genetics</topic><topic>Fluorescence biolabel</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>Photosynthesis</topic><topic>Phycobilins - chemistry</topic><topic>Phycobilins - genetics</topic><topic>Phycobilins - metabolism</topic><topic>Phycobilisome</topic><topic>Phycobilisomes - metabolism</topic><topic>Phycocyanin - chemistry</topic><topic>Phycocyanin - genetics</topic><topic>Phycocyanin - metabolism</topic><topic>Phycocyanobilin</topic><topic>Phycoerythrin - chemistry</topic><topic>Phycoerythrin - genetics</topic><topic>Phycoerythrin - metabolism</topic><topic>Phycoerythrobilin</topic><topic>Phytochromobilin</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Spectral tuning</topic><topic>Spectrometry, Fluorescence</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Dan</creatorcontrib><creatorcontrib>Ding, Wen-Long</creatorcontrib><creatorcontrib>Zhao, Bao-Qing</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Xu, Qian-Zhao</creatorcontrib><creatorcontrib>Scheer, Hugo</creatorcontrib><creatorcontrib>Zhao, Kai-Hong</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Dan</au><au>Ding, Wen-Long</au><au>Zhao, Bao-Qing</au><au>Lu, Lu</au><au>Xu, Qian-Zhao</au><au>Scheer, Hugo</au><au>Zhao, Kai-Hong</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2016-06</date><risdate>2016</risdate><volume>1857</volume><issue>6</issue><spage>688</spage><epage>694</epage><pages>688-694</pages><issn>0005-2728</issn><issn>0006-3002</issn><eissn>1879-2650</eissn><abstract>Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660nm and fluoresces near 675nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing &gt;700nm and fluorescing &gt;710nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700nm and fluoresce at 714nm. The red shift of ~40nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,31 double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711nm, fluorescence at 628 or 726nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation. •Synechococcus PCC7335 has a second core-membrane linker (ApcE2) of the phycobilisome.•Chromophore binding of ApcE2 is non-covalent, thereby preserving their full conjugation length.•The resulting red-shift would be relevant for adaptation to growth under near-infrared light.•Extremely red-shifted ApcE2 variants generated in E. coli show their potential as red and near infrared fluorophores.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27045046</pmid><doi>10.1016/j.bbabio.2016.03.033</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta, 2016-06, Vol.1857 (6), p.688-694
issn 0005-2728
0006-3002
1879-2650
language eng
recordid cdi_osti_scitechconnect_1497187
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Core-membrane linker
Cyanobacteria
Escherichia coli - genetics
Fluorescence biolabel
Microscopy, Fluorescence
Models, Molecular
Photosynthesis
Phycobilins - chemistry
Phycobilins - genetics
Phycobilins - metabolism
Phycobilisome
Phycobilisomes - metabolism
Phycocyanin - chemistry
Phycocyanin - genetics
Phycocyanin - metabolism
Phycocyanobilin
Phycoerythrin - chemistry
Phycoerythrin - genetics
Phycoerythrin - metabolism
Phycoerythrobilin
Phytochromobilin
Protein Multimerization
Protein Structure, Tertiary
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Spectral tuning
Spectrometry, Fluorescence
Synechococcus - genetics
Synechococcus - metabolism
title Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapting%20photosynthesis%20to%20the%20near-infrared:%20non-covalent%20binding%20of%20phycocyanobilin%20provides%20an%20extreme%20spectral%20red-shift%20to%20phycobilisome%20core-membrane%20linker%20from%20Synechococcus%20sp.%20PCC7335&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Miao,%20Dan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-06&rft.volume=1857&rft.issue=6&rft.spage=688&rft.epage=694&rft.pages=688-694&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2016.03.033&rft_dat=%3Cproquest_osti_%3E1789497615%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789497615&rft_id=info:pmid/27045046&rft_els_id=S0005272816300809&rfr_iscdi=true