Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm

Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2019-04, Vol.302 (C), p.38-44
Hauptverfasser: Liu, Liying, Wang, Xuehang, Izotov, Vladimir, Havrykov, Dmytro, Koltsov, Illia, Han, Wei, Zozulya, Yulia, Linyucheva, Olga, Zahorodna, Veronika, Gogotsi, Oleksiy, Gogotsi, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue C
container_start_page 38
container_title Electrochimica acta
container_volume 302
creator Liu, Liying
Wang, Xuehang
Izotov, Vladimir
Havrykov, Dmytro
Koltsov, Illia
Han, Wei
Zozulya, Yulia
Linyucheva, Olga
Zahorodna, Veronika
Gogotsi, Oleksiy
Gogotsi, Yury
description Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process. [Display omitted] •The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process.
doi_str_mv 10.1016/j.electacta.2019.02.004
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1495941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619302294</els_id><sourcerecordid>2197882008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</originalsourceid><addsrcrecordid>eNqFkE1OHDEQhS0EEsOQM2CRdXfK3f5dolESkBDZhLXlsasZD9Ae7J5E2eVGXCBnyCE4STwZxBappNq89-rVR8gZg5YBk5_WLT6gn1ydtgNmWuhaAH5AZkyrvum1MIdkBsD6hkstj8lJKWsAUFLBjNws3Mb5OLnRI00D9cnlgs1ddnHEQL3LyzTS_xdyCljozzit6LSK_n7EUuh2Q6dENcDL7-e_fx5PydHgHgp-eN1zcvvl8_fFZXP97evV4uK68ZyZqdFSiMEYGbwJPRvE0C15h8EMHJlTXiijQHG5dAoHEYRTug-CSyk6rRUD0c_J-T43lSnaUh9Av_JpHGtPy7gRhrMq-rgXbXJ62mKZ7Dpt81h72Y4ZpXUHoKtK7VU-p1IyDnaT46PLvywDuyNs1_aNsN0RttDZSrg6L_ZOrJ_-iJh3RbCCDDHveoQU3834B3ueiKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197882008</pqid></control><display><type>article</type><title>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Liying ; Wang, Xuehang ; Izotov, Vladimir ; Havrykov, Dmytro ; Koltsov, Illia ; Han, Wei ; Zozulya, Yulia ; Linyucheva, Olga ; Zahorodna, Veronika ; Gogotsi, Oleksiy ; Gogotsi, Yury</creator><creatorcontrib>Liu, Liying ; Wang, Xuehang ; Izotov, Vladimir ; Havrykov, Dmytro ; Koltsov, Illia ; Han, Wei ; Zozulya, Yulia ; Linyucheva, Olga ; Zahorodna, Veronika ; Gogotsi, Oleksiy ; Gogotsi, Yury ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</creatorcontrib><description>Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process. [Display omitted] •The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.02.004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Activated carbon ; Alternating current ; And carbide derived carbon ; Capacitance ; Carbon ; Coarse-grained carbon ; Electrical resistivity ; Electrode materials ; Electrodes ; Energy storage ; Flux density ; Gravimetry ; High areal capacitance ; MATERIALS SCIENCE ; Nonaqueous electrolytes ; Pore size distribution ; Porosity ; Separators ; Supercapacitor ; Supercapacitors ; Thick electrode ; Thickness</subject><ispartof>Electrochimica acta, 2019-04, Vol.302 (C), p.38-44</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</citedby><cites>FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468619302294$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1495941$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Liying</creatorcontrib><creatorcontrib>Wang, Xuehang</creatorcontrib><creatorcontrib>Izotov, Vladimir</creatorcontrib><creatorcontrib>Havrykov, Dmytro</creatorcontrib><creatorcontrib>Koltsov, Illia</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Zozulya, Yulia</creatorcontrib><creatorcontrib>Linyucheva, Olga</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</creatorcontrib><title>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</title><title>Electrochimica acta</title><description>Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process. [Display omitted] •The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process.</description><subject>Activated carbon</subject><subject>Alternating current</subject><subject>And carbide derived carbon</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Coarse-grained carbon</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>High areal capacitance</subject><subject>MATERIALS SCIENCE</subject><subject>Nonaqueous electrolytes</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Separators</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Thick electrode</subject><subject>Thickness</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OHDEQhS0EEsOQM2CRdXfK3f5dolESkBDZhLXlsasZD9Ae7J5E2eVGXCBnyCE4STwZxBappNq89-rVR8gZg5YBk5_WLT6gn1ydtgNmWuhaAH5AZkyrvum1MIdkBsD6hkstj8lJKWsAUFLBjNws3Mb5OLnRI00D9cnlgs1ddnHEQL3LyzTS_xdyCljozzit6LSK_n7EUuh2Q6dENcDL7-e_fx5PydHgHgp-eN1zcvvl8_fFZXP97evV4uK68ZyZqdFSiMEYGbwJPRvE0C15h8EMHJlTXiijQHG5dAoHEYRTug-CSyk6rRUD0c_J-T43lSnaUh9Av_JpHGtPy7gRhrMq-rgXbXJ62mKZ7Dpt81h72Y4ZpXUHoKtK7VU-p1IyDnaT46PLvywDuyNs1_aNsN0RttDZSrg6L_ZOrJ_-iJh3RbCCDDHveoQU3834B3ueiKY</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Liu, Liying</creator><creator>Wang, Xuehang</creator><creator>Izotov, Vladimir</creator><creator>Havrykov, Dmytro</creator><creator>Koltsov, Illia</creator><creator>Han, Wei</creator><creator>Zozulya, Yulia</creator><creator>Linyucheva, Olga</creator><creator>Zahorodna, Veronika</creator><creator>Gogotsi, Oleksiy</creator><creator>Gogotsi, Yury</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190410</creationdate><title>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</title><author>Liu, Liying ; Wang, Xuehang ; Izotov, Vladimir ; Havrykov, Dmytro ; Koltsov, Illia ; Han, Wei ; Zozulya, Yulia ; Linyucheva, Olga ; Zahorodna, Veronika ; Gogotsi, Oleksiy ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Alternating current</topic><topic>And carbide derived carbon</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Coarse-grained carbon</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>High areal capacitance</topic><topic>MATERIALS SCIENCE</topic><topic>Nonaqueous electrolytes</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Separators</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Thick electrode</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liying</creatorcontrib><creatorcontrib>Wang, Xuehang</creatorcontrib><creatorcontrib>Izotov, Vladimir</creatorcontrib><creatorcontrib>Havrykov, Dmytro</creatorcontrib><creatorcontrib>Koltsov, Illia</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Zozulya, Yulia</creatorcontrib><creatorcontrib>Linyucheva, Olga</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liying</au><au>Wang, Xuehang</au><au>Izotov, Vladimir</au><au>Havrykov, Dmytro</au><au>Koltsov, Illia</au><au>Han, Wei</au><au>Zozulya, Yulia</au><au>Linyucheva, Olga</au><au>Zahorodna, Veronika</au><au>Gogotsi, Oleksiy</au><au>Gogotsi, Yury</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</atitle><jtitle>Electrochimica acta</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>302</volume><issue>C</issue><spage>38</spage><epage>44</epage><pages>38-44</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process. [Display omitted] •The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.02.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2019-04, Vol.302 (C), p.38-44
issn 0013-4686
1873-3859
language eng
recordid cdi_osti_scitechconnect_1495941
source Elsevier ScienceDirect Journals
subjects Activated carbon
Alternating current
And carbide derived carbon
Capacitance
Carbon
Coarse-grained carbon
Electrical resistivity
Electrode materials
Electrodes
Energy storage
Flux density
Gravimetry
High areal capacitance
MATERIALS SCIENCE
Nonaqueous electrolytes
Pore size distribution
Porosity
Separators
Supercapacitor
Supercapacitors
Thick electrode
Thickness
title Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacitance%20of%20coarse-grained%20carbon%20electrodes%20with%20thickness%20up%20to%20800%E2%80%AF%CE%BCm&rft.jtitle=Electrochimica%20acta&rft.au=Liu,%20Liying&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-04-10&rft.volume=302&rft.issue=C&rft.spage=38&rft.epage=44&rft.pages=38-44&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.02.004&rft_dat=%3Cproquest_osti_%3E2197882008%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197882008&rft_id=info:pmid/&rft_els_id=S0013468619302294&rfr_iscdi=true