Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm
Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the pote...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2019-04, Vol.302 (C), p.38-44 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | C |
container_start_page | 38 |
container_title | Electrochimica acta |
container_volume | 302 |
creator | Liu, Liying Wang, Xuehang Izotov, Vladimir Havrykov, Dmytro Koltsov, Illia Han, Wei Zozulya, Yulia Linyucheva, Olga Zahorodna, Veronika Gogotsi, Oleksiy Gogotsi, Yury |
description | Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process.
[Display omitted]
•The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process. |
doi_str_mv | 10.1016/j.electacta.2019.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1495941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619302294</els_id><sourcerecordid>2197882008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</originalsourceid><addsrcrecordid>eNqFkE1OHDEQhS0EEsOQM2CRdXfK3f5dolESkBDZhLXlsasZD9Ae7J5E2eVGXCBnyCE4STwZxBappNq89-rVR8gZg5YBk5_WLT6gn1ydtgNmWuhaAH5AZkyrvum1MIdkBsD6hkstj8lJKWsAUFLBjNws3Mb5OLnRI00D9cnlgs1ddnHEQL3LyzTS_xdyCljozzit6LSK_n7EUuh2Q6dENcDL7-e_fx5PydHgHgp-eN1zcvvl8_fFZXP97evV4uK68ZyZqdFSiMEYGbwJPRvE0C15h8EMHJlTXiijQHG5dAoHEYRTug-CSyk6rRUD0c_J-T43lSnaUh9Av_JpHGtPy7gRhrMq-rgXbXJ62mKZ7Dpt81h72Y4ZpXUHoKtK7VU-p1IyDnaT46PLvywDuyNs1_aNsN0RttDZSrg6L_ZOrJ_-iJh3RbCCDDHveoQU3834B3ueiKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197882008</pqid></control><display><type>article</type><title>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Liying ; Wang, Xuehang ; Izotov, Vladimir ; Havrykov, Dmytro ; Koltsov, Illia ; Han, Wei ; Zozulya, Yulia ; Linyucheva, Olga ; Zahorodna, Veronika ; Gogotsi, Oleksiy ; Gogotsi, Yury</creator><creatorcontrib>Liu, Liying ; Wang, Xuehang ; Izotov, Vladimir ; Havrykov, Dmytro ; Koltsov, Illia ; Han, Wei ; Zozulya, Yulia ; Linyucheva, Olga ; Zahorodna, Veronika ; Gogotsi, Oleksiy ; Gogotsi, Yury ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</creatorcontrib><description>Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process.
[Display omitted]
•The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.02.004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Activated carbon ; Alternating current ; And carbide derived carbon ; Capacitance ; Carbon ; Coarse-grained carbon ; Electrical resistivity ; Electrode materials ; Electrodes ; Energy storage ; Flux density ; Gravimetry ; High areal capacitance ; MATERIALS SCIENCE ; Nonaqueous electrolytes ; Pore size distribution ; Porosity ; Separators ; Supercapacitor ; Supercapacitors ; Thick electrode ; Thickness</subject><ispartof>Electrochimica acta, 2019-04, Vol.302 (C), p.38-44</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</citedby><cites>FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468619302294$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1495941$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Liying</creatorcontrib><creatorcontrib>Wang, Xuehang</creatorcontrib><creatorcontrib>Izotov, Vladimir</creatorcontrib><creatorcontrib>Havrykov, Dmytro</creatorcontrib><creatorcontrib>Koltsov, Illia</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Zozulya, Yulia</creatorcontrib><creatorcontrib>Linyucheva, Olga</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</creatorcontrib><title>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</title><title>Electrochimica acta</title><description>Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process.
[Display omitted]
•The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process.</description><subject>Activated carbon</subject><subject>Alternating current</subject><subject>And carbide derived carbon</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Coarse-grained carbon</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>High areal capacitance</subject><subject>MATERIALS SCIENCE</subject><subject>Nonaqueous electrolytes</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Separators</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Thick electrode</subject><subject>Thickness</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OHDEQhS0EEsOQM2CRdXfK3f5dolESkBDZhLXlsasZD9Ae7J5E2eVGXCBnyCE4STwZxBappNq89-rVR8gZg5YBk5_WLT6gn1ydtgNmWuhaAH5AZkyrvum1MIdkBsD6hkstj8lJKWsAUFLBjNws3Mb5OLnRI00D9cnlgs1ddnHEQL3LyzTS_xdyCljozzit6LSK_n7EUuh2Q6dENcDL7-e_fx5PydHgHgp-eN1zcvvl8_fFZXP97evV4uK68ZyZqdFSiMEYGbwJPRvE0C15h8EMHJlTXiijQHG5dAoHEYRTug-CSyk6rRUD0c_J-T43lSnaUh9Av_JpHGtPy7gRhrMq-rgXbXJ62mKZ7Dpt81h72Y4ZpXUHoKtK7VU-p1IyDnaT46PLvywDuyNs1_aNsN0RttDZSrg6L_ZOrJ_-iJh3RbCCDDHveoQU3834B3ueiKY</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Liu, Liying</creator><creator>Wang, Xuehang</creator><creator>Izotov, Vladimir</creator><creator>Havrykov, Dmytro</creator><creator>Koltsov, Illia</creator><creator>Han, Wei</creator><creator>Zozulya, Yulia</creator><creator>Linyucheva, Olga</creator><creator>Zahorodna, Veronika</creator><creator>Gogotsi, Oleksiy</creator><creator>Gogotsi, Yury</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190410</creationdate><title>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</title><author>Liu, Liying ; Wang, Xuehang ; Izotov, Vladimir ; Havrykov, Dmytro ; Koltsov, Illia ; Han, Wei ; Zozulya, Yulia ; Linyucheva, Olga ; Zahorodna, Veronika ; Gogotsi, Oleksiy ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-8655f996dc9d31f5f2b42ed9f4e1a7c57970746ba7ef5d5a783d5466528871053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Alternating current</topic><topic>And carbide derived carbon</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Coarse-grained carbon</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>High areal capacitance</topic><topic>MATERIALS SCIENCE</topic><topic>Nonaqueous electrolytes</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Separators</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Thick electrode</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liying</creatorcontrib><creatorcontrib>Wang, Xuehang</creatorcontrib><creatorcontrib>Izotov, Vladimir</creatorcontrib><creatorcontrib>Havrykov, Dmytro</creatorcontrib><creatorcontrib>Koltsov, Illia</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Zozulya, Yulia</creatorcontrib><creatorcontrib>Linyucheva, Olga</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liying</au><au>Wang, Xuehang</au><au>Izotov, Vladimir</au><au>Havrykov, Dmytro</au><au>Koltsov, Illia</au><au>Han, Wei</au><au>Zozulya, Yulia</au><au>Linyucheva, Olga</au><au>Zahorodna, Veronika</au><au>Gogotsi, Oleksiy</au><au>Gogotsi, Yury</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm</atitle><jtitle>Electrochimica acta</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>302</volume><issue>C</issue><spage>38</spage><epage>44</epage><pages>38-44</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Increasing the mass loading of active material in a supercapacitor electrode improves the energy storage capability per electrode area. However, the increase of mass loading is accompanied by the increased electrode thickness, which often causes drops in specific capacitance and counteracts the potential increase in areal capacitance once the electrode thickness exceeds 100 μm. In our previous work, we showed high specific capacitance retention of coarse-grained carbide derived carbon (CDC) with electrode thicknesses up to 1000 μm in organic electrolytes. In this work, we report that this behavior can be extended to coarse-grained activated carbon (AC). AC is the most common commercial supercapacitor electrode material with a much broader pore size distribution and lower electric conductivity compared to CDC. The areal capacitance of the AC electrode is enhanced from 2.3 F/cm2 to 7.4 F/cm2 at 5 mV/s, as the electrode thickness increases from 200 to 800 μm. With the increased mass loading of the active electrode material, the mass and volume occupied by current collectors and separators are reduced in the electrode stack, which leads to an increase of the gravimetric and volumetric energy density of the device. By reporting on this advantageous behavior in thick electrodes using coarse-grained carbons, we hope to garner interest toward an unexplored method for improving the performance of porous carbon-based supercapacitors, without increasing the cost or changing the current used supercapacitor manufacturing process.
[Display omitted]
•The capacitance retention of coarse-grained AC is above 80 % as the electrode thickness increases from 200 to 800 µm.•The mass and volume occupied by passive components are reduced with the increased mass loading of the active material.•A strategy improves the energy density of supercapacitor without extra cost or changing the current manufacturing process.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.02.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2019-04, Vol.302 (C), p.38-44 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_osti_scitechconnect_1495941 |
source | Elsevier ScienceDirect Journals |
subjects | Activated carbon Alternating current And carbide derived carbon Capacitance Carbon Coarse-grained carbon Electrical resistivity Electrode materials Electrodes Energy storage Flux density Gravimetry High areal capacitance MATERIALS SCIENCE Nonaqueous electrolytes Pore size distribution Porosity Separators Supercapacitor Supercapacitors Thick electrode Thickness |
title | Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacitance%20of%20coarse-grained%20carbon%20electrodes%20with%20thickness%20up%20to%20800%E2%80%AF%CE%BCm&rft.jtitle=Electrochimica%20acta&rft.au=Liu,%20Liying&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-04-10&rft.volume=302&rft.issue=C&rft.spage=38&rft.epage=44&rft.pages=38-44&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.02.004&rft_dat=%3Cproquest_osti_%3E2197882008%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197882008&rft_id=info:pmid/&rft_els_id=S0013468619302294&rfr_iscdi=true |