Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen
Graphene is one of the most promising materials for high-performance gas sensors due to its unique properties such as high sensitivity at room temperature, transparency, and flexibility. However, the low selectivity and irreversible behavior of graphene-based gas sensors are major problems. Here, we...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-02, Vol.11 (6), p.2966-2973 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2973 |
---|---|
container_issue | 6 |
container_start_page | 2966 |
container_title | Nanoscale |
container_volume | 11 |
creator | Kim, Yeonhoo Choi, Yong Seok Park, Seo Yun Kim, Taehoon Hong, Seung-Pyo Lee, Tae Hyung Moon, Cheon Woo Lee, Jong-Heun Lee, Donghwa Hong, Byung Hee Jang, Ho Won |
description | Graphene is one of the most promising materials for high-performance gas sensors due to its unique properties such as high sensitivity at room temperature, transparency, and flexibility. However, the low selectivity and irreversible behavior of graphene-based gas sensors are major problems. Here, we present unprecedented room temperature hydrogen detection by Au nanoclusters supported on self-activated graphene. Compared to pristine graphene sensors, the Au-decorated graphene sensors exhibit highly improved gas-sensing properties upon exposure to various gases. In particular, an unexpected substantial enhancement in H2 detection is found, which has never been reported for Au decoration on any type of chemoresistive material. Density functional theory calculations reveal that Au nanoclusters on graphene contribute to the adsorption of H atoms, whereas the surfaces of Au and graphene do not bind with H atoms individually. The discovery of such a new functionality in the existing material platform holds the key to diverse research areas based on metal nanocluster/graphene heterostructures. |
doi_str_mv | 10.1039/c8nr09076a |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1495173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179444120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-644970ebeaedc71e26d6c87d66d1099c5fd578802f572c47a95d19f2c16dc19d3</originalsourceid><addsrcrecordid>eNpd0c2OFCEQB3BiNO66evEBDNGLMWmFhobmOJn4lWw0MXruMEX1NJtuGIFW5y18ZBln3YMnKuRXFYo_IU85e82ZMG-gD4kZppW9Ry5bJlkjhG7v39VKXpBHOd8wpoxQ4iG5EKfKCHZJfm9W6hBissXHQONILd0ne5gwIF08pAiTDQFnOsZEM85jY6H4H7agozDhEhNmn-sN0nHGX343I93bXGnIMWX605eJ5nWXiw3F23k-Ugx1JNT-2nqIISMtkU5Hl-Iew2PyYLRzxie35xX59u7t1-2H5vrz-4_bzXUDkpvSKCmNZrhDiw40x1Y5Bb12SjnOjIFudJ3ue9aOnW5Bams6x83YAlcOuHHiijw_z4318UMGXxAmiHVVKAOXpuNaVPTyjA4pfl8xl2HxGXCebcC45qHl2kgpecsqffEfvYlrCnWFk1I9E9zoql6dVf3YnBOOwyH5xabjwNlwCnPY9p--_A1zU_Gz25HrbkF3R_-lJ_4AD7icWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176803197</pqid></control><display><type>article</type><title>Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Yeonhoo ; Choi, Yong Seok ; Park, Seo Yun ; Kim, Taehoon ; Hong, Seung-Pyo ; Lee, Tae Hyung ; Moon, Cheon Woo ; Lee, Jong-Heun ; Lee, Donghwa ; Hong, Byung Hee ; Jang, Ho Won</creator><creatorcontrib>Kim, Yeonhoo ; Choi, Yong Seok ; Park, Seo Yun ; Kim, Taehoon ; Hong, Seung-Pyo ; Lee, Tae Hyung ; Moon, Cheon Woo ; Lee, Jong-Heun ; Lee, Donghwa ; Hong, Byung Hee ; Jang, Ho Won ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Graphene is one of the most promising materials for high-performance gas sensors due to its unique properties such as high sensitivity at room temperature, transparency, and flexibility. However, the low selectivity and irreversible behavior of graphene-based gas sensors are major problems. Here, we present unprecedented room temperature hydrogen detection by Au nanoclusters supported on self-activated graphene. Compared to pristine graphene sensors, the Au-decorated graphene sensors exhibit highly improved gas-sensing properties upon exposure to various gases. In particular, an unexpected substantial enhancement in H2 detection is found, which has never been reported for Au decoration on any type of chemoresistive material. Density functional theory calculations reveal that Au nanoclusters on graphene contribute to the adsorption of H atoms, whereas the surfaces of Au and graphene do not bind with H atoms individually. The discovery of such a new functionality in the existing material platform holds the key to diverse research areas based on metal nanocluster/graphene heterostructures.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr09076a</identifier><identifier>PMID: 30693930</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Decoration ; Density functional theory ; Gas sensors ; Gases ; Graphene ; Heterostructures ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Material Science ; Microchannels ; Selectivity ; Sensors</subject><ispartof>Nanoscale, 2019-02, Vol.11 (6), p.2966-2973</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-644970ebeaedc71e26d6c87d66d1099c5fd578802f572c47a95d19f2c16dc19d3</citedby><cites>FETCH-LOGICAL-c419t-644970ebeaedc71e26d6c87d66d1099c5fd578802f572c47a95d19f2c16dc19d3</cites><orcidid>0000-0002-6952-7359 ; 0000-0002-3075-3623 ; 0000-0003-3057-3208 ; 0000-0002-8956-3648 ; 0000-0001-8355-8875 ; 0000000289563648 ; 0000000330573208 ; 0000000230753623 ; 0000000183558875 ; 0000000269527359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30693930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1495173$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yeonhoo</creatorcontrib><creatorcontrib>Choi, Yong Seok</creatorcontrib><creatorcontrib>Park, Seo Yun</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Hong, Seung-Pyo</creatorcontrib><creatorcontrib>Lee, Tae Hyung</creatorcontrib><creatorcontrib>Moon, Cheon Woo</creatorcontrib><creatorcontrib>Lee, Jong-Heun</creatorcontrib><creatorcontrib>Lee, Donghwa</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Graphene is one of the most promising materials for high-performance gas sensors due to its unique properties such as high sensitivity at room temperature, transparency, and flexibility. However, the low selectivity and irreversible behavior of graphene-based gas sensors are major problems. Here, we present unprecedented room temperature hydrogen detection by Au nanoclusters supported on self-activated graphene. Compared to pristine graphene sensors, the Au-decorated graphene sensors exhibit highly improved gas-sensing properties upon exposure to various gases. In particular, an unexpected substantial enhancement in H2 detection is found, which has never been reported for Au decoration on any type of chemoresistive material. Density functional theory calculations reveal that Au nanoclusters on graphene contribute to the adsorption of H atoms, whereas the surfaces of Au and graphene do not bind with H atoms individually. The discovery of such a new functionality in the existing material platform holds the key to diverse research areas based on metal nanocluster/graphene heterostructures.</description><subject>Decoration</subject><subject>Density functional theory</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Material Science</subject><subject>Microchannels</subject><subject>Selectivity</subject><subject>Sensors</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0c2OFCEQB3BiNO66evEBDNGLMWmFhobmOJn4lWw0MXruMEX1NJtuGIFW5y18ZBln3YMnKuRXFYo_IU85e82ZMG-gD4kZppW9Ry5bJlkjhG7v39VKXpBHOd8wpoxQ4iG5EKfKCHZJfm9W6hBissXHQONILd0ne5gwIF08pAiTDQFnOsZEM85jY6H4H7agozDhEhNmn-sN0nHGX343I93bXGnIMWX605eJ5nWXiw3F23k-Ugx1JNT-2nqIISMtkU5Hl-Iew2PyYLRzxie35xX59u7t1-2H5vrz-4_bzXUDkpvSKCmNZrhDiw40x1Y5Bb12SjnOjIFudJ3ue9aOnW5Bams6x83YAlcOuHHiijw_z4318UMGXxAmiHVVKAOXpuNaVPTyjA4pfl8xl2HxGXCebcC45qHl2kgpecsqffEfvYlrCnWFk1I9E9zoql6dVf3YnBOOwyH5xabjwNlwCnPY9p--_A1zU_Gz25HrbkF3R_-lJ_4AD7icWA</recordid><startdate>20190207</startdate><enddate>20190207</enddate><creator>Kim, Yeonhoo</creator><creator>Choi, Yong Seok</creator><creator>Park, Seo Yun</creator><creator>Kim, Taehoon</creator><creator>Hong, Seung-Pyo</creator><creator>Lee, Tae Hyung</creator><creator>Moon, Cheon Woo</creator><creator>Lee, Jong-Heun</creator><creator>Lee, Donghwa</creator><creator>Hong, Byung Hee</creator><creator>Jang, Ho Won</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0002-3075-3623</orcidid><orcidid>https://orcid.org/0000-0003-3057-3208</orcidid><orcidid>https://orcid.org/0000-0002-8956-3648</orcidid><orcidid>https://orcid.org/0000-0001-8355-8875</orcidid><orcidid>https://orcid.org/0000000289563648</orcidid><orcidid>https://orcid.org/0000000330573208</orcidid><orcidid>https://orcid.org/0000000230753623</orcidid><orcidid>https://orcid.org/0000000183558875</orcidid><orcidid>https://orcid.org/0000000269527359</orcidid></search><sort><creationdate>20190207</creationdate><title>Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen</title><author>Kim, Yeonhoo ; Choi, Yong Seok ; Park, Seo Yun ; Kim, Taehoon ; Hong, Seung-Pyo ; Lee, Tae Hyung ; Moon, Cheon Woo ; Lee, Jong-Heun ; Lee, Donghwa ; Hong, Byung Hee ; Jang, Ho Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-644970ebeaedc71e26d6c87d66d1099c5fd578802f572c47a95d19f2c16dc19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decoration</topic><topic>Density functional theory</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Material Science</topic><topic>Microchannels</topic><topic>Selectivity</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeonhoo</creatorcontrib><creatorcontrib>Choi, Yong Seok</creatorcontrib><creatorcontrib>Park, Seo Yun</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Hong, Seung-Pyo</creatorcontrib><creatorcontrib>Lee, Tae Hyung</creatorcontrib><creatorcontrib>Moon, Cheon Woo</creatorcontrib><creatorcontrib>Lee, Jong-Heun</creatorcontrib><creatorcontrib>Lee, Donghwa</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yeonhoo</au><au>Choi, Yong Seok</au><au>Park, Seo Yun</au><au>Kim, Taehoon</au><au>Hong, Seung-Pyo</au><au>Lee, Tae Hyung</au><au>Moon, Cheon Woo</au><au>Lee, Jong-Heun</au><au>Lee, Donghwa</au><au>Hong, Byung Hee</au><au>Jang, Ho Won</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-02-07</date><risdate>2019</risdate><volume>11</volume><issue>6</issue><spage>2966</spage><epage>2973</epage><pages>2966-2973</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Graphene is one of the most promising materials for high-performance gas sensors due to its unique properties such as high sensitivity at room temperature, transparency, and flexibility. However, the low selectivity and irreversible behavior of graphene-based gas sensors are major problems. Here, we present unprecedented room temperature hydrogen detection by Au nanoclusters supported on self-activated graphene. Compared to pristine graphene sensors, the Au-decorated graphene sensors exhibit highly improved gas-sensing properties upon exposure to various gases. In particular, an unexpected substantial enhancement in H2 detection is found, which has never been reported for Au decoration on any type of chemoresistive material. Density functional theory calculations reveal that Au nanoclusters on graphene contribute to the adsorption of H atoms, whereas the surfaces of Au and graphene do not bind with H atoms individually. The discovery of such a new functionality in the existing material platform holds the key to diverse research areas based on metal nanocluster/graphene heterostructures.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30693930</pmid><doi>10.1039/c8nr09076a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid><orcidid>https://orcid.org/0000-0002-3075-3623</orcidid><orcidid>https://orcid.org/0000-0003-3057-3208</orcidid><orcidid>https://orcid.org/0000-0002-8956-3648</orcidid><orcidid>https://orcid.org/0000-0001-8355-8875</orcidid><orcidid>https://orcid.org/0000000289563648</orcidid><orcidid>https://orcid.org/0000000330573208</orcidid><orcidid>https://orcid.org/0000000230753623</orcidid><orcidid>https://orcid.org/0000000183558875</orcidid><orcidid>https://orcid.org/0000000269527359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-02, Vol.11 (6), p.2966-2973 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_osti_scitechconnect_1495173 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Decoration Density functional theory Gas sensors Gases Graphene Heterostructures INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Material Science Microchannels Selectivity Sensors |
title | Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au%20decoration%20of%20a%20graphene%20microchannel%20for%20self-activated%20chemoresistive%20flexible%20gas%20sensors%20with%20substantially%20enhanced%20response%20to%20hydrogen&rft.jtitle=Nanoscale&rft.au=Kim,%20Yeonhoo&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-02-07&rft.volume=11&rft.issue=6&rft.spage=2966&rft.epage=2973&rft.pages=2966-2973&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr09076a&rft_dat=%3Cproquest_osti_%3E2179444120%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176803197&rft_id=info:pmid/30693930&rfr_iscdi=true |