Charge-stripe crystal phase in an insulating cuprate

High-temperature (high- T c ) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases 1 . The insulating charge-stripe crystal phase is predicted to form when a small density of ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-02, Vol.18 (2), p.103-107
Hauptverfasser: Zhao, He, Ren, Zheng, Rachmilowitz, Bryan, Schneeloch, John, Zhong, Ruidan, Gu, Genda, Wang, Ziqiang, Zeljkovic, Ilija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue 2
container_start_page 103
container_title Nature materials
container_volume 18
creator Zhao, He
Ren, Zheng
Rachmilowitz, Bryan
Schneeloch, John
Zhong, Ruidan
Gu, Genda
Wang, Ziqiang
Zeljkovic, Ilija
description High-temperature (high- T c ) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases 1 . The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state 1 – 3 , but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi 2 Sr 2 CaCu 2 O 8+ x . In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4 a 0 period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high- T c cuprates. A surface annealing method is used to access an insulating phase of Bi 2 Sr 2 CaCu 2 O 8+ x and unidirectional charge order is observed.
doi_str_mv 10.1038/s41563-018-0243-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1495006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158248213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoun78AC9S9OKlmslX26MsfsGCFz2HJDu7W-m2NUlh998b6aogeEkCeeadmYeQc6A3QHl5GwRIxXMKZU6Z4Plmj0xAFCoXStH93RuAsSNyHMI7pQykVIfkiFMpKwEwIWK6Mn6JeYi-7jFzfhuiabJ-ZQJmdZuZNp1haEys22Xmht6biKfkYGGagGe7-4S8Pdy_Tp_y2cvj8_RuljtJy5gbqtBayyUTRUVpyZgQzsxBCWsX0hVOcbRCibkQNo1agOWWK4bSMeckVvyEXI65XYi1Dq6O6Faua1t0UYOoJKUqQdcj1PvuY8AQ9boODpvGtNgNQaedSyZKBjyhV3_Q927wbVohUapKAxZQJApGyvkuBI8L3ft6bfxWA9Vf3vXoXSfv-su73qSai13yYNc4_6n4Fp0ANgIhfbVL9L-t_0_9BE7Ri4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169822717</pqid></control><display><type>article</type><title>Charge-stripe crystal phase in an insulating cuprate</title><source>SpringerLink Journals</source><source>Nature</source><creator>Zhao, He ; Ren, Zheng ; Rachmilowitz, Bryan ; Schneeloch, John ; Zhong, Ruidan ; Gu, Genda ; Wang, Ziqiang ; Zeljkovic, Ilija</creator><creatorcontrib>Zhao, He ; Ren, Zheng ; Rachmilowitz, Bryan ; Schneeloch, John ; Zhong, Ruidan ; Gu, Genda ; Wang, Ziqiang ; Zeljkovic, Ilija ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><description>High-temperature (high- T c ) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases 1 . The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state 1 – 3 , but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi 2 Sr 2 CaCu 2 O 8+ x . In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4 a 0 period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high- T c cuprates. A surface annealing method is used to access an insulating phase of Bi 2 Sr 2 CaCu 2 O 8+ x and unidirectional charge order is observed.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-018-0243-x</identifier><identifier>PMID: 30559411</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/766/119/1003 ; Annealing ; Antiferromagnetism ; Biomaterials ; Bismuth strontium calcium copper oxide ; Charge transfer ; Chemistry and Materials Science ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystals ; Cuprates ; Doping ; Experiments ; Fermi surfaces ; High temperature ; Inhomogeneity ; Letter ; Materials Science ; Microscopy ; Nanotechnology ; Optical and Electronic Materials ; Oxygen ; Single crystals ; Spectrum analysis ; Superconductivity</subject><ispartof>Nature materials, 2019-02, Vol.18 (2), p.103-107</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</citedby><cites>FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</cites><orcidid>0000-0001-9966-2140 ; 0000000298863255 ; 0000000199662140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-018-0243-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-018-0243-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30559411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1495006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Ren, Zheng</creatorcontrib><creatorcontrib>Rachmilowitz, Bryan</creatorcontrib><creatorcontrib>Schneeloch, John</creatorcontrib><creatorcontrib>Zhong, Ruidan</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Zeljkovic, Ilija</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><title>Charge-stripe crystal phase in an insulating cuprate</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>High-temperature (high- T c ) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases 1 . The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state 1 – 3 , but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi 2 Sr 2 CaCu 2 O 8+ x . In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4 a 0 period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high- T c cuprates. A surface annealing method is used to access an insulating phase of Bi 2 Sr 2 CaCu 2 O 8+ x and unidirectional charge order is observed.</description><subject>639/301/119/995</subject><subject>639/766/119/1003</subject><subject>Annealing</subject><subject>Antiferromagnetism</subject><subject>Biomaterials</subject><subject>Bismuth strontium calcium copper oxide</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystals</subject><subject>Cuprates</subject><subject>Doping</subject><subject>Experiments</subject><subject>Fermi surfaces</subject><subject>High temperature</subject><subject>Inhomogeneity</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Superconductivity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMoun78AC9S9OKlmslX26MsfsGCFz2HJDu7W-m2NUlh998b6aogeEkCeeadmYeQc6A3QHl5GwRIxXMKZU6Z4Plmj0xAFCoXStH93RuAsSNyHMI7pQykVIfkiFMpKwEwIWK6Mn6JeYi-7jFzfhuiabJ-ZQJmdZuZNp1haEys22Xmht6biKfkYGGagGe7-4S8Pdy_Tp_y2cvj8_RuljtJy5gbqtBayyUTRUVpyZgQzsxBCWsX0hVOcbRCibkQNo1agOWWK4bSMeckVvyEXI65XYi1Dq6O6Faua1t0UYOoJKUqQdcj1PvuY8AQ9boODpvGtNgNQaedSyZKBjyhV3_Q927wbVohUapKAxZQJApGyvkuBI8L3ft6bfxWA9Vf3vXoXSfv-su73qSai13yYNc4_6n4Fp0ANgIhfbVL9L-t_0_9BE7Ri4Q</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhao, He</creator><creator>Ren, Zheng</creator><creator>Rachmilowitz, Bryan</creator><creator>Schneeloch, John</creator><creator>Zhong, Ruidan</creator><creator>Gu, Genda</creator><creator>Wang, Ziqiang</creator><creator>Zeljkovic, Ilija</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9966-2140</orcidid><orcidid>https://orcid.org/0000000298863255</orcidid><orcidid>https://orcid.org/0000000199662140</orcidid></search><sort><creationdate>20190201</creationdate><title>Charge-stripe crystal phase in an insulating cuprate</title><author>Zhao, He ; Ren, Zheng ; Rachmilowitz, Bryan ; Schneeloch, John ; Zhong, Ruidan ; Gu, Genda ; Wang, Ziqiang ; Zeljkovic, Ilija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/995</topic><topic>639/766/119/1003</topic><topic>Annealing</topic><topic>Antiferromagnetism</topic><topic>Biomaterials</topic><topic>Bismuth strontium calcium copper oxide</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystals</topic><topic>Cuprates</topic><topic>Doping</topic><topic>Experiments</topic><topic>Fermi surfaces</topic><topic>High temperature</topic><topic>Inhomogeneity</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Ren, Zheng</creatorcontrib><creatorcontrib>Rachmilowitz, Bryan</creatorcontrib><creatorcontrib>Schneeloch, John</creatorcontrib><creatorcontrib>Zhong, Ruidan</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Zeljkovic, Ilija</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, He</au><au>Ren, Zheng</au><au>Rachmilowitz, Bryan</au><au>Schneeloch, John</au><au>Zhong, Ruidan</au><au>Gu, Genda</au><au>Wang, Ziqiang</au><au>Zeljkovic, Ilija</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge-stripe crystal phase in an insulating cuprate</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>18</volume><issue>2</issue><spage>103</spage><epage>107</epage><pages>103-107</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>High-temperature (high- T c ) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases 1 . The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state 1 – 3 , but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi 2 Sr 2 CaCu 2 O 8+ x . In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4 a 0 period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high- T c cuprates. A surface annealing method is used to access an insulating phase of Bi 2 Sr 2 CaCu 2 O 8+ x and unidirectional charge order is observed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30559411</pmid><doi>10.1038/s41563-018-0243-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9966-2140</orcidid><orcidid>https://orcid.org/0000000298863255</orcidid><orcidid>https://orcid.org/0000000199662140</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2019-02, Vol.18 (2), p.103-107
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1495006
source SpringerLink Journals; Nature
subjects 639/301/119/995
639/766/119/1003
Annealing
Antiferromagnetism
Biomaterials
Bismuth strontium calcium copper oxide
Charge transfer
Chemistry and Materials Science
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystals
Cuprates
Doping
Experiments
Fermi surfaces
High temperature
Inhomogeneity
Letter
Materials Science
Microscopy
Nanotechnology
Optical and Electronic Materials
Oxygen
Single crystals
Spectrum analysis
Superconductivity
title Charge-stripe crystal phase in an insulating cuprate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge-stripe%20crystal%20phase%20in%20an%20insulating%20cuprate&rft.jtitle=Nature%20materials&rft.au=Zhao,%20He&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-02-01&rft.volume=18&rft.issue=2&rft.spage=103&rft.epage=107&rft.pages=103-107&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-018-0243-x&rft_dat=%3Cproquest_osti_%3E2158248213%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169822717&rft_id=info:pmid/30559411&rfr_iscdi=true