Charge-stripe crystal phase in an insulating cuprate
High-temperature (high- T c ) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases 1 . The insulating charge-stripe crystal phase is predicted to form when a small density of ho...
Gespeichert in:
Veröffentlicht in: | Nature materials 2019-02, Vol.18 (2), p.103-107 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107 |
---|---|
container_issue | 2 |
container_start_page | 103 |
container_title | Nature materials |
container_volume | 18 |
creator | Zhao, He Ren, Zheng Rachmilowitz, Bryan Schneeloch, John Zhong, Ruidan Gu, Genda Wang, Ziqiang Zeljkovic, Ilija |
description | High-temperature (high-
T
c
) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases
1
. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state
1
–
3
, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi
2
Sr
2
CaCu
2
O
8+
x
. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4
a
0
period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-
T
c
cuprates.
A surface annealing method is used to access an insulating phase of Bi
2
Sr
2
CaCu
2
O
8+
x
and unidirectional charge order is observed. |
doi_str_mv | 10.1038/s41563-018-0243-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1495006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158248213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoun78AC9S9OKlmslX26MsfsGCFz2HJDu7W-m2NUlh998b6aogeEkCeeadmYeQc6A3QHl5GwRIxXMKZU6Z4Plmj0xAFCoXStH93RuAsSNyHMI7pQykVIfkiFMpKwEwIWK6Mn6JeYi-7jFzfhuiabJ-ZQJmdZuZNp1haEys22Xmht6biKfkYGGagGe7-4S8Pdy_Tp_y2cvj8_RuljtJy5gbqtBayyUTRUVpyZgQzsxBCWsX0hVOcbRCibkQNo1agOWWK4bSMeckVvyEXI65XYi1Dq6O6Faua1t0UYOoJKUqQdcj1PvuY8AQ9boODpvGtNgNQaedSyZKBjyhV3_Q927wbVohUapKAxZQJApGyvkuBI8L3ft6bfxWA9Vf3vXoXSfv-su73qSai13yYNc4_6n4Fp0ANgIhfbVL9L-t_0_9BE7Ri4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169822717</pqid></control><display><type>article</type><title>Charge-stripe crystal phase in an insulating cuprate</title><source>SpringerLink Journals</source><source>Nature</source><creator>Zhao, He ; Ren, Zheng ; Rachmilowitz, Bryan ; Schneeloch, John ; Zhong, Ruidan ; Gu, Genda ; Wang, Ziqiang ; Zeljkovic, Ilija</creator><creatorcontrib>Zhao, He ; Ren, Zheng ; Rachmilowitz, Bryan ; Schneeloch, John ; Zhong, Ruidan ; Gu, Genda ; Wang, Ziqiang ; Zeljkovic, Ilija ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><description>High-temperature (high-
T
c
) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases
1
. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state
1
–
3
, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi
2
Sr
2
CaCu
2
O
8+
x
. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4
a
0
period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-
T
c
cuprates.
A surface annealing method is used to access an insulating phase of Bi
2
Sr
2
CaCu
2
O
8+
x
and unidirectional charge order is observed.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-018-0243-x</identifier><identifier>PMID: 30559411</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/766/119/1003 ; Annealing ; Antiferromagnetism ; Biomaterials ; Bismuth strontium calcium copper oxide ; Charge transfer ; Chemistry and Materials Science ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystals ; Cuprates ; Doping ; Experiments ; Fermi surfaces ; High temperature ; Inhomogeneity ; Letter ; Materials Science ; Microscopy ; Nanotechnology ; Optical and Electronic Materials ; Oxygen ; Single crystals ; Spectrum analysis ; Superconductivity</subject><ispartof>Nature materials, 2019-02, Vol.18 (2), p.103-107</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</citedby><cites>FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</cites><orcidid>0000-0001-9966-2140 ; 0000000298863255 ; 0000000199662140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-018-0243-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-018-0243-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30559411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1495006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Ren, Zheng</creatorcontrib><creatorcontrib>Rachmilowitz, Bryan</creatorcontrib><creatorcontrib>Schneeloch, John</creatorcontrib><creatorcontrib>Zhong, Ruidan</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Zeljkovic, Ilija</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><title>Charge-stripe crystal phase in an insulating cuprate</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>High-temperature (high-
T
c
) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases
1
. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state
1
–
3
, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi
2
Sr
2
CaCu
2
O
8+
x
. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4
a
0
period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-
T
c
cuprates.
A surface annealing method is used to access an insulating phase of Bi
2
Sr
2
CaCu
2
O
8+
x
and unidirectional charge order is observed.</description><subject>639/301/119/995</subject><subject>639/766/119/1003</subject><subject>Annealing</subject><subject>Antiferromagnetism</subject><subject>Biomaterials</subject><subject>Bismuth strontium calcium copper oxide</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystals</subject><subject>Cuprates</subject><subject>Doping</subject><subject>Experiments</subject><subject>Fermi surfaces</subject><subject>High temperature</subject><subject>Inhomogeneity</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Superconductivity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMoun78AC9S9OKlmslX26MsfsGCFz2HJDu7W-m2NUlh998b6aogeEkCeeadmYeQc6A3QHl5GwRIxXMKZU6Z4Plmj0xAFCoXStH93RuAsSNyHMI7pQykVIfkiFMpKwEwIWK6Mn6JeYi-7jFzfhuiabJ-ZQJmdZuZNp1haEys22Xmht6biKfkYGGagGe7-4S8Pdy_Tp_y2cvj8_RuljtJy5gbqtBayyUTRUVpyZgQzsxBCWsX0hVOcbRCibkQNo1agOWWK4bSMeckVvyEXI65XYi1Dq6O6Faua1t0UYOoJKUqQdcj1PvuY8AQ9boODpvGtNgNQaedSyZKBjyhV3_Q927wbVohUapKAxZQJApGyvkuBI8L3ft6bfxWA9Vf3vXoXSfv-su73qSai13yYNc4_6n4Fp0ANgIhfbVL9L-t_0_9BE7Ri4Q</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhao, He</creator><creator>Ren, Zheng</creator><creator>Rachmilowitz, Bryan</creator><creator>Schneeloch, John</creator><creator>Zhong, Ruidan</creator><creator>Gu, Genda</creator><creator>Wang, Ziqiang</creator><creator>Zeljkovic, Ilija</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9966-2140</orcidid><orcidid>https://orcid.org/0000000298863255</orcidid><orcidid>https://orcid.org/0000000199662140</orcidid></search><sort><creationdate>20190201</creationdate><title>Charge-stripe crystal phase in an insulating cuprate</title><author>Zhao, He ; Ren, Zheng ; Rachmilowitz, Bryan ; Schneeloch, John ; Zhong, Ruidan ; Gu, Genda ; Wang, Ziqiang ; Zeljkovic, Ilija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-a06ebbb3524790082244cad164bbf5c7c63eb464d44b14771b3b362e5c2cc5e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/995</topic><topic>639/766/119/1003</topic><topic>Annealing</topic><topic>Antiferromagnetism</topic><topic>Biomaterials</topic><topic>Bismuth strontium calcium copper oxide</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystals</topic><topic>Cuprates</topic><topic>Doping</topic><topic>Experiments</topic><topic>Fermi surfaces</topic><topic>High temperature</topic><topic>Inhomogeneity</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Ren, Zheng</creatorcontrib><creatorcontrib>Rachmilowitz, Bryan</creatorcontrib><creatorcontrib>Schneeloch, John</creatorcontrib><creatorcontrib>Zhong, Ruidan</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Zeljkovic, Ilija</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, He</au><au>Ren, Zheng</au><au>Rachmilowitz, Bryan</au><au>Schneeloch, John</au><au>Zhong, Ruidan</au><au>Gu, Genda</au><au>Wang, Ziqiang</au><au>Zeljkovic, Ilija</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge-stripe crystal phase in an insulating cuprate</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>18</volume><issue>2</issue><spage>103</spage><epage>107</epage><pages>103-107</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>High-temperature (high-
T
c
) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases
1
. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state
1
–
3
, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi
2
Sr
2
CaCu
2
O
8+
x
. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4
a
0
period along the Cu–O–Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-
T
c
cuprates.
A surface annealing method is used to access an insulating phase of Bi
2
Sr
2
CaCu
2
O
8+
x
and unidirectional charge order is observed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30559411</pmid><doi>10.1038/s41563-018-0243-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9966-2140</orcidid><orcidid>https://orcid.org/0000000298863255</orcidid><orcidid>https://orcid.org/0000000199662140</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2019-02, Vol.18 (2), p.103-107 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1495006 |
source | SpringerLink Journals; Nature |
subjects | 639/301/119/995 639/766/119/1003 Annealing Antiferromagnetism Biomaterials Bismuth strontium calcium copper oxide Charge transfer Chemistry and Materials Science Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Crystals Cuprates Doping Experiments Fermi surfaces High temperature Inhomogeneity Letter Materials Science Microscopy Nanotechnology Optical and Electronic Materials Oxygen Single crystals Spectrum analysis Superconductivity |
title | Charge-stripe crystal phase in an insulating cuprate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge-stripe%20crystal%20phase%20in%20an%20insulating%20cuprate&rft.jtitle=Nature%20materials&rft.au=Zhao,%20He&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-02-01&rft.volume=18&rft.issue=2&rft.spage=103&rft.epage=107&rft.pages=103-107&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-018-0243-x&rft_dat=%3Cproquest_osti_%3E2158248213%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169822717&rft_id=info:pmid/30559411&rfr_iscdi=true |