A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization
•A pinball loss optimization based probabilistic forecasting method is developed.•The best shape of a predictive distribution is explored and optimized.•The proposed method reduces pinball loss by up to 35% compared to baselines. With increasing wind penetrations into electric power systems, probabi...
Gespeichert in:
Veröffentlicht in: | Applied energy 2019-03, Vol.238 (C), p.1497-1505 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1505 |
---|---|
container_issue | C |
container_start_page | 1497 |
container_title | Applied energy |
container_volume | 238 |
creator | Sun, Mucun Feng, Cong Chartan, Erol Kevin Hodge, Bri-Mathias Zhang, Jie |
description | •A pinball loss optimization based probabilistic forecasting method is developed.•The best shape of a predictive distribution is explored and optimized.•The proposed method reduces pinball loss by up to 35% compared to baselines.
With increasing wind penetrations into electric power systems, probabilistic wind forecasting becomes more critical to power system operations because of its capability of quantifying wind uncertainties. In this paper, a two-step probabilistic wind forecasting approach based on pinball loss optimization is developed. First, a multimodel machine learning-based ensemble deterministic forecasting framework is adopted to generate deterministic forecasts. The deterministic forecast is assumed to be the mean value of the predictive distribution at each forecasting time stamp. Then, the optimal unknown parameter (i.e., standard deviation) of the predictive distribution is estimated by a support vector regression surrogate model based on the deterministic forecasts. Finally, probabilistic forecasts are generated from the predictive distribution. Numerical results of case studies at eight locations show that the developed two-step probabilistic forecasting methodology has improved the pinball loss metric score by up to 35% compared to a baseline quantile regression forecasting model. |
doi_str_mv | 10.1016/j.apenergy.2019.01.182 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1494978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261919301692</els_id><sourcerecordid>S0306261919301692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-126590197f89837b02542f88b13993463d8907795346243ee8a2d31781fe515d3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMcvIIt7gtfOw76BEC-pEhc4W4m9aV21cWQbUPl6HBXOnHZntTO7M4RcASuBQXOzKbsJRwyrfckZqJJBCZIfkQXIlhcKQB6TBROsKXgD6pScxbhhjHHgbEHGO5q-fBETTjSufUhFwrCjU_B917uti8kZ-uVGSwcf0HQZjyu6w7T21m_9ak_7LqKlfswctM4k94nUZl5w_Udyee6n5Hbuu5vBBTkZum3Ey996Tt4fH97un4vl69PL_d2yMEK2qQDe1Cp7aQeppGh7xuuKD1L2IJQSVSOsVKxtVZ17XglE2XEroJUwYA21Fefk-qDr88M6GpfQrI0fRzRJQ6Uq1cq81ByWTPAxBhz0FNyuC3sNTM_R6o3-i1bP0WoGOkebibcHImYLnw7DfAFHk_2H-YD17j-JH9a1hvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sun, Mucun ; Feng, Cong ; Chartan, Erol Kevin ; Hodge, Bri-Mathias ; Zhang, Jie</creator><creatorcontrib>Sun, Mucun ; Feng, Cong ; Chartan, Erol Kevin ; Hodge, Bri-Mathias ; Zhang, Jie ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>•A pinball loss optimization based probabilistic forecasting method is developed.•The best shape of a predictive distribution is explored and optimized.•The proposed method reduces pinball loss by up to 35% compared to baselines.
With increasing wind penetrations into electric power systems, probabilistic wind forecasting becomes more critical to power system operations because of its capability of quantifying wind uncertainties. In this paper, a two-step probabilistic wind forecasting approach based on pinball loss optimization is developed. First, a multimodel machine learning-based ensemble deterministic forecasting framework is adopted to generate deterministic forecasts. The deterministic forecast is assumed to be the mean value of the predictive distribution at each forecasting time stamp. Then, the optimal unknown parameter (i.e., standard deviation) of the predictive distribution is estimated by a support vector regression surrogate model based on the deterministic forecasts. Finally, probabilistic forecasts are generated from the predictive distribution. Numerical results of case studies at eight locations show that the developed two-step probabilistic forecasting methodology has improved the pinball loss metric score by up to 35% compared to a baseline quantile regression forecasting model.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2019.01.182</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Machine learning ; Optimization ; Pinball loss ; POWER TRANSMISSION AND DISTRIBUTION ; Probabilistic wind forecasting ; Surrogate model ; WIND ENERGY</subject><ispartof>Applied energy, 2019-03, Vol.238 (C), p.1497-1505</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-126590197f89837b02542f88b13993463d8907795346243ee8a2d31781fe515d3</citedby><cites>FETCH-LOGICAL-c387t-126590197f89837b02542f88b13993463d8907795346243ee8a2d31781fe515d3</cites><orcidid>0000-0003-2866-0716 ; 0000000328660716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2019.01.182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1494978$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Mucun</creatorcontrib><creatorcontrib>Feng, Cong</creatorcontrib><creatorcontrib>Chartan, Erol Kevin</creatorcontrib><creatorcontrib>Hodge, Bri-Mathias</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization</title><title>Applied energy</title><description>•A pinball loss optimization based probabilistic forecasting method is developed.•The best shape of a predictive distribution is explored and optimized.•The proposed method reduces pinball loss by up to 35% compared to baselines.
With increasing wind penetrations into electric power systems, probabilistic wind forecasting becomes more critical to power system operations because of its capability of quantifying wind uncertainties. In this paper, a two-step probabilistic wind forecasting approach based on pinball loss optimization is developed. First, a multimodel machine learning-based ensemble deterministic forecasting framework is adopted to generate deterministic forecasts. The deterministic forecast is assumed to be the mean value of the predictive distribution at each forecasting time stamp. Then, the optimal unknown parameter (i.e., standard deviation) of the predictive distribution is estimated by a support vector regression surrogate model based on the deterministic forecasts. Finally, probabilistic forecasts are generated from the predictive distribution. Numerical results of case studies at eight locations show that the developed two-step probabilistic forecasting methodology has improved the pinball loss metric score by up to 35% compared to a baseline quantile regression forecasting model.</description><subject>Machine learning</subject><subject>Optimization</subject><subject>Pinball loss</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Probabilistic wind forecasting</subject><subject>Surrogate model</subject><subject>WIND ENERGY</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMcvIIt7gtfOw76BEC-pEhc4W4m9aV21cWQbUPl6HBXOnHZntTO7M4RcASuBQXOzKbsJRwyrfckZqJJBCZIfkQXIlhcKQB6TBROsKXgD6pScxbhhjHHgbEHGO5q-fBETTjSufUhFwrCjU_B917uti8kZ-uVGSwcf0HQZjyu6w7T21m_9ak_7LqKlfswctM4k94nUZl5w_Udyee6n5Hbuu5vBBTkZum3Ey996Tt4fH97un4vl69PL_d2yMEK2qQDe1Cp7aQeppGh7xuuKD1L2IJQSVSOsVKxtVZ17XglE2XEroJUwYA21Fefk-qDr88M6GpfQrI0fRzRJQ6Uq1cq81ByWTPAxBhz0FNyuC3sNTM_R6o3-i1bP0WoGOkebibcHImYLnw7DfAFHk_2H-YD17j-JH9a1hvw</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Sun, Mucun</creator><creator>Feng, Cong</creator><creator>Chartan, Erol Kevin</creator><creator>Hodge, Bri-Mathias</creator><creator>Zhang, Jie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2866-0716</orcidid><orcidid>https://orcid.org/0000000328660716</orcidid></search><sort><creationdate>20190315</creationdate><title>A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization</title><author>Sun, Mucun ; Feng, Cong ; Chartan, Erol Kevin ; Hodge, Bri-Mathias ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-126590197f89837b02542f88b13993463d8907795346243ee8a2d31781fe515d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Machine learning</topic><topic>Optimization</topic><topic>Pinball loss</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Probabilistic wind forecasting</topic><topic>Surrogate model</topic><topic>WIND ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mucun</creatorcontrib><creatorcontrib>Feng, Cong</creatorcontrib><creatorcontrib>Chartan, Erol Kevin</creatorcontrib><creatorcontrib>Hodge, Bri-Mathias</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mucun</au><au>Feng, Cong</au><au>Chartan, Erol Kevin</au><au>Hodge, Bri-Mathias</au><au>Zhang, Jie</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization</atitle><jtitle>Applied energy</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>238</volume><issue>C</issue><spage>1497</spage><epage>1505</epage><pages>1497-1505</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>•A pinball loss optimization based probabilistic forecasting method is developed.•The best shape of a predictive distribution is explored and optimized.•The proposed method reduces pinball loss by up to 35% compared to baselines.
With increasing wind penetrations into electric power systems, probabilistic wind forecasting becomes more critical to power system operations because of its capability of quantifying wind uncertainties. In this paper, a two-step probabilistic wind forecasting approach based on pinball loss optimization is developed. First, a multimodel machine learning-based ensemble deterministic forecasting framework is adopted to generate deterministic forecasts. The deterministic forecast is assumed to be the mean value of the predictive distribution at each forecasting time stamp. Then, the optimal unknown parameter (i.e., standard deviation) of the predictive distribution is estimated by a support vector regression surrogate model based on the deterministic forecasts. Finally, probabilistic forecasts are generated from the predictive distribution. Numerical results of case studies at eight locations show that the developed two-step probabilistic forecasting methodology has improved the pinball loss metric score by up to 35% compared to a baseline quantile regression forecasting model.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2019.01.182</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2866-0716</orcidid><orcidid>https://orcid.org/0000000328660716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2019-03, Vol.238 (C), p.1497-1505 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_osti_scitechconnect_1494978 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Machine learning Optimization Pinball loss POWER TRANSMISSION AND DISTRIBUTION Probabilistic wind forecasting Surrogate model WIND ENERGY |
title | A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-step%20short-term%20probabilistic%20wind%20forecasting%20methodology%20based%20on%20predictive%20distribution%20optimization&rft.jtitle=Applied%20energy&rft.au=Sun,%20Mucun&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2019-03-15&rft.volume=238&rft.issue=C&rft.spage=1497&rft.epage=1505&rft.pages=1497-1505&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2019.01.182&rft_dat=%3Celsevier_osti_%3ES0306261919301692%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0306261919301692&rfr_iscdi=true |