Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study

α-Glycine is studied up to 50 GPa using synchrotron angle-dispersive X-ray powder diffraction (XRD), Raman spectroscopy, and quantum chemistry calculations performed at multiples levels of theory. Results from both XRD and Raman experiments reveal an extended pressure stability of the α phase up to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2019-07, Vol.21 (30), p.4457-4464
Hauptverfasser: Hinton, Jasmine K., Clarke, Samantha M., Steele, Brad A., Kuo, I-Feng W., Greenberg, Eran, Prakapenka, Vitali B., Kunz, Martin, Kroonblawd, Matthew P., Stavrou, Elissaios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4464
container_issue 30
container_start_page 4457
container_title CrystEngComm
container_volume 21
creator Hinton, Jasmine K.
Clarke, Samantha M.
Steele, Brad A.
Kuo, I-Feng W.
Greenberg, Eran
Prakapenka, Vitali B.
Kunz, Martin
Kroonblawd, Matthew P.
Stavrou, Elissaios
description α-Glycine is studied up to 50 GPa using synchrotron angle-dispersive X-ray powder diffraction (XRD), Raman spectroscopy, and quantum chemistry calculations performed at multiples levels of theory. Results from both XRD and Raman experiments reveal an extended pressure stability of the α phase up to 50 GPa and the room temperature (RT) equation of state (EOS) was determined up to this pressure. This extended stability is corroborated by density functional theory (DFT) based calculations using the USPEX evolutionary structural search algorithm. Two calculated EOSs, as determined by DFT at T = 0 K and semiempirical density functional tight-binding (DFTB) at RT, and the calculated Raman modes frequencies show a good agreement with the corresponding experimental results. Our work provides a definitive phase diagram and EOS for α-glycine up to 50 GPa, which informs prebiotic synthesis scenarios that can involve pressures well in excess of 10 GPa.
doi_str_mv 10.1039/C8CE02123F
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1493494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265717663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-4d643cb01cf23f797a7e0ca1a1a80a2b50e1219984430e9ec6fc463d54a4c7303</originalsourceid><addsrcrecordid>eNpNUMtKw0AUDaJgrW78gkF3QnRezcOdhFaFghtdD9ObOzYlzcSZiZjP8kf8JqdWUO7iPjjncM9JknNGrxkV5U1VVHPKGReLg2TCZJalBRXi8N98nJx4v6GUScboJHmfG4MQPLGG9A69HxwS25GwRuKDGyDsDrqrSatDaABJPXZ628AP4-szfW1HaDq8JZqA3a7iWBP86NE1W-yCbn-4Uc06jPS4-zDU42lyZHTr8ey3T5OXxfy5ekiXT_eP1d0yBcF5SGWdSQErysBwYfIy1zlS0CxWQTVfzSgyzsqykFJQLBEyAzIT9UxqCbmgYppc7HWtD43y0ASENdiui54Vk6WQpYygyz2od_ZtQB_Uxg6ui38pzrNZzvIsExF1tUeBs947NKqPHrUbFaNqF776C198A4ZGd8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265717663</pqid></control><display><type>article</type><title>Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hinton, Jasmine K. ; Clarke, Samantha M. ; Steele, Brad A. ; Kuo, I-Feng W. ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Kroonblawd, Matthew P. ; Stavrou, Elissaios</creator><creatorcontrib>Hinton, Jasmine K. ; Clarke, Samantha M. ; Steele, Brad A. ; Kuo, I-Feng W. ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Kroonblawd, Matthew P. ; Stavrou, Elissaios</creatorcontrib><description>α-Glycine is studied up to 50 GPa using synchrotron angle-dispersive X-ray powder diffraction (XRD), Raman spectroscopy, and quantum chemistry calculations performed at multiples levels of theory. Results from both XRD and Raman experiments reveal an extended pressure stability of the α phase up to 50 GPa and the room temperature (RT) equation of state (EOS) was determined up to this pressure. This extended stability is corroborated by density functional theory (DFT) based calculations using the USPEX evolutionary structural search algorithm. Two calculated EOSs, as determined by DFT at T = 0 K and semiempirical density functional tight-binding (DFTB) at RT, and the calculated Raman modes frequencies show a good agreement with the corresponding experimental results. Our work provides a definitive phase diagram and EOS for α-glycine up to 50 GPa, which informs prebiotic synthesis scenarios that can involve pressures well in excess of 10 GPa.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/C8CE02123F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Density functional theory ; Dynamic structural analysis ; Equations of state ; Evolutionary algorithms ; Glycine ; Lattice parameters ; Lattice vibration ; Mathematical analysis ; Organic chemistry ; Phase diagrams ; Pressure dependence ; Pressure effects ; Quantum chemistry ; Raman spectra ; Raman spectroscopy ; Search algorithms ; Stability ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>CrystEngComm, 2019-07, Vol.21 (30), p.4457-4464</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-4d643cb01cf23f797a7e0ca1a1a80a2b50e1219984430e9ec6fc463d54a4c7303</citedby><cites>FETCH-LOGICAL-c322t-4d643cb01cf23f797a7e0ca1a1a80a2b50e1219984430e9ec6fc463d54a4c7303</cites><orcidid>0000-0002-5009-5998 ; 0000-0001-5212-4927 ; 0000000152124927 ; 0000000250095998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1493494$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hinton, Jasmine K.</creatorcontrib><creatorcontrib>Clarke, Samantha M.</creatorcontrib><creatorcontrib>Steele, Brad A.</creatorcontrib><creatorcontrib>Kuo, I-Feng W.</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Kunz, Martin</creatorcontrib><creatorcontrib>Kroonblawd, Matthew P.</creatorcontrib><creatorcontrib>Stavrou, Elissaios</creatorcontrib><title>Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study</title><title>CrystEngComm</title><description>α-Glycine is studied up to 50 GPa using synchrotron angle-dispersive X-ray powder diffraction (XRD), Raman spectroscopy, and quantum chemistry calculations performed at multiples levels of theory. Results from both XRD and Raman experiments reveal an extended pressure stability of the α phase up to 50 GPa and the room temperature (RT) equation of state (EOS) was determined up to this pressure. This extended stability is corroborated by density functional theory (DFT) based calculations using the USPEX evolutionary structural search algorithm. Two calculated EOSs, as determined by DFT at T = 0 K and semiempirical density functional tight-binding (DFTB) at RT, and the calculated Raman modes frequencies show a good agreement with the corresponding experimental results. Our work provides a definitive phase diagram and EOS for α-glycine up to 50 GPa, which informs prebiotic synthesis scenarios that can involve pressures well in excess of 10 GPa.</description><subject>Density functional theory</subject><subject>Dynamic structural analysis</subject><subject>Equations of state</subject><subject>Evolutionary algorithms</subject><subject>Glycine</subject><subject>Lattice parameters</subject><subject>Lattice vibration</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Phase diagrams</subject><subject>Pressure dependence</subject><subject>Pressure effects</subject><subject>Quantum chemistry</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Search algorithms</subject><subject>Stability</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNUMtKw0AUDaJgrW78gkF3QnRezcOdhFaFghtdD9ObOzYlzcSZiZjP8kf8JqdWUO7iPjjncM9JknNGrxkV5U1VVHPKGReLg2TCZJalBRXi8N98nJx4v6GUScboJHmfG4MQPLGG9A69HxwS25GwRuKDGyDsDrqrSatDaABJPXZ628AP4-szfW1HaDq8JZqA3a7iWBP86NE1W-yCbn-4Uc06jPS4-zDU42lyZHTr8ey3T5OXxfy5ekiXT_eP1d0yBcF5SGWdSQErysBwYfIy1zlS0CxWQTVfzSgyzsqykFJQLBEyAzIT9UxqCbmgYppc7HWtD43y0ASENdiui54Vk6WQpYygyz2od_ZtQB_Uxg6ui38pzrNZzvIsExF1tUeBs947NKqPHrUbFaNqF776C198A4ZGd8k</recordid><startdate>20190729</startdate><enddate>20190729</enddate><creator>Hinton, Jasmine K.</creator><creator>Clarke, Samantha M.</creator><creator>Steele, Brad A.</creator><creator>Kuo, I-Feng W.</creator><creator>Greenberg, Eran</creator><creator>Prakapenka, Vitali B.</creator><creator>Kunz, Martin</creator><creator>Kroonblawd, Matthew P.</creator><creator>Stavrou, Elissaios</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5009-5998</orcidid><orcidid>https://orcid.org/0000-0001-5212-4927</orcidid><orcidid>https://orcid.org/0000000152124927</orcidid><orcidid>https://orcid.org/0000000250095998</orcidid></search><sort><creationdate>20190729</creationdate><title>Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study</title><author>Hinton, Jasmine K. ; Clarke, Samantha M. ; Steele, Brad A. ; Kuo, I-Feng W. ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Kroonblawd, Matthew P. ; Stavrou, Elissaios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-4d643cb01cf23f797a7e0ca1a1a80a2b50e1219984430e9ec6fc463d54a4c7303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Density functional theory</topic><topic>Dynamic structural analysis</topic><topic>Equations of state</topic><topic>Evolutionary algorithms</topic><topic>Glycine</topic><topic>Lattice parameters</topic><topic>Lattice vibration</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Phase diagrams</topic><topic>Pressure dependence</topic><topic>Pressure effects</topic><topic>Quantum chemistry</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Search algorithms</topic><topic>Stability</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinton, Jasmine K.</creatorcontrib><creatorcontrib>Clarke, Samantha M.</creatorcontrib><creatorcontrib>Steele, Brad A.</creatorcontrib><creatorcontrib>Kuo, I-Feng W.</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Kunz, Martin</creatorcontrib><creatorcontrib>Kroonblawd, Matthew P.</creatorcontrib><creatorcontrib>Stavrou, Elissaios</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinton, Jasmine K.</au><au>Clarke, Samantha M.</au><au>Steele, Brad A.</au><au>Kuo, I-Feng W.</au><au>Greenberg, Eran</au><au>Prakapenka, Vitali B.</au><au>Kunz, Martin</au><au>Kroonblawd, Matthew P.</au><au>Stavrou, Elissaios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study</atitle><jtitle>CrystEngComm</jtitle><date>2019-07-29</date><risdate>2019</risdate><volume>21</volume><issue>30</issue><spage>4457</spage><epage>4464</epage><pages>4457-4464</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>α-Glycine is studied up to 50 GPa using synchrotron angle-dispersive X-ray powder diffraction (XRD), Raman spectroscopy, and quantum chemistry calculations performed at multiples levels of theory. Results from both XRD and Raman experiments reveal an extended pressure stability of the α phase up to 50 GPa and the room temperature (RT) equation of state (EOS) was determined up to this pressure. This extended stability is corroborated by density functional theory (DFT) based calculations using the USPEX evolutionary structural search algorithm. Two calculated EOSs, as determined by DFT at T = 0 K and semiempirical density functional tight-binding (DFTB) at RT, and the calculated Raman modes frequencies show a good agreement with the corresponding experimental results. Our work provides a definitive phase diagram and EOS for α-glycine up to 50 GPa, which informs prebiotic synthesis scenarios that can involve pressures well in excess of 10 GPa.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8CE02123F</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5009-5998</orcidid><orcidid>https://orcid.org/0000-0001-5212-4927</orcidid><orcidid>https://orcid.org/0000000152124927</orcidid><orcidid>https://orcid.org/0000000250095998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-8033
ispartof CrystEngComm, 2019-07, Vol.21 (30), p.4457-4464
issn 1466-8033
1466-8033
language eng
recordid cdi_osti_scitechconnect_1493494
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Density functional theory
Dynamic structural analysis
Equations of state
Evolutionary algorithms
Glycine
Lattice parameters
Lattice vibration
Mathematical analysis
Organic chemistry
Phase diagrams
Pressure dependence
Pressure effects
Quantum chemistry
Raman spectra
Raman spectroscopy
Search algorithms
Stability
X ray powder diffraction
X-ray diffraction
title Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20pressure%20on%20the%20structure%20and%20lattice%20dynamics%20of%20%CE%B1-glycine:%20a%20combined%20experimental%20and%20theoretical%20study&rft.jtitle=CrystEngComm&rft.au=Hinton,%20Jasmine%20K.&rft.date=2019-07-29&rft.volume=21&rft.issue=30&rft.spage=4457&rft.epage=4464&rft.pages=4457-4464&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/C8CE02123F&rft_dat=%3Cproquest_osti_%3E2265717663%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265717663&rft_id=info:pmid/&rfr_iscdi=true