General modeling framework for quantum photodetectors
Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. H...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2018-12, Vol.98 (6), Article 063835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review. A |
container_volume | 98 |
creator | Young, Steve M. Sarovar, Mohan Léonard, François |
description | Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. In conclusion, the framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design. |
doi_str_mv | 10.1103/PhysRevA.98.063835 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1492377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_98_063835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a016fea57ba7502eae8577d565ebc483dbdaa30e1b618aabd9c9dcc0141415873</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOOZewKvifWvSNGlyOYZOYaCIXofT9NRW22YmmbK3X8dUzsU5Fx_n__kIuWY0Y4zy2-d2H17we5lplVHJFRdnZJYXUqda8-L8_87lJVmE8EEpZUJryeWMiDWO6KFPBldj343vSeNhwB_nP5PG-eRrB2PcDcm2dXEiItrofLgiFw30ARe_e07e7u9eVw_p5mn9uFpuUsuZiilQJhsEUVZQCpojoBJlWQspsLKF4nVVA3CKrJJMAVS1trq2lrJiGqFKPic3p78uxM4E2035rXXjONUwrNA5L49QfoKsdyF4bMzWdwP4vWHUHAWZP0FGK3MSxA9hz1uO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>General modeling framework for quantum photodetectors</title><source>American Physical Society Journals</source><creator>Young, Steve M. ; Sarovar, Mohan ; Léonard, François</creator><creatorcontrib>Young, Steve M. ; Sarovar, Mohan ; Léonard, François ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. In conclusion, the framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.98.063835</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>OTHER INSTRUMENTATION</subject><ispartof>Physical review. A, 2018-12, Vol.98 (6), Article 063835</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a016fea57ba7502eae8577d565ebc483dbdaa30e1b618aabd9c9dcc0141415873</citedby><cites>FETCH-LOGICAL-c318t-a016fea57ba7502eae8577d565ebc483dbdaa30e1b618aabd9c9dcc0141415873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1492377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Steve M.</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>Léonard, François</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>General modeling framework for quantum photodetectors</title><title>Physical review. A</title><description>Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. In conclusion, the framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.</description><subject>OTHER INSTRUMENTATION</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOOZewKvifWvSNGlyOYZOYaCIXofT9NRW22YmmbK3X8dUzsU5Fx_n__kIuWY0Y4zy2-d2H17we5lplVHJFRdnZJYXUqda8-L8_87lJVmE8EEpZUJryeWMiDWO6KFPBldj343vSeNhwB_nP5PG-eRrB2PcDcm2dXEiItrofLgiFw30ARe_e07e7u9eVw_p5mn9uFpuUsuZiilQJhsEUVZQCpojoBJlWQspsLKF4nVVA3CKrJJMAVS1trq2lrJiGqFKPic3p78uxM4E2035rXXjONUwrNA5L49QfoKsdyF4bMzWdwP4vWHUHAWZP0FGK3MSxA9hz1uO</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Young, Steve M.</creator><creator>Sarovar, Mohan</creator><creator>Léonard, François</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20181226</creationdate><title>General modeling framework for quantum photodetectors</title><author>Young, Steve M. ; Sarovar, Mohan ; Léonard, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a016fea57ba7502eae8577d565ebc483dbdaa30e1b618aabd9c9dcc0141415873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>OTHER INSTRUMENTATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Steve M.</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>Léonard, François</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Steve M.</au><au>Sarovar, Mohan</au><au>Léonard, François</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General modeling framework for quantum photodetectors</atitle><jtitle>Physical review. A</jtitle><date>2018-12-26</date><risdate>2018</risdate><volume>98</volume><issue>6</issue><artnum>063835</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. In conclusion, the framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.98.063835</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2018-12, Vol.98 (6), Article 063835 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_osti_scitechconnect_1492377 |
source | American Physical Society Journals |
subjects | OTHER INSTRUMENTATION |
title | General modeling framework for quantum photodetectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20modeling%20framework%20for%20quantum%20photodetectors&rft.jtitle=Physical%20review.%20A&rft.au=Young,%20Steve%20M.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2018-12-26&rft.volume=98&rft.issue=6&rft.artnum=063835&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.98.063835&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_98_063835%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |