Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D

Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2017-03, Vol.57 (5), p.56016
Hauptverfasser: Ding, R., Rudakov, D.L., Stangeby, P.C., Wampler, W.R., Abrams, T., Brezinsek, S., Briesemeister, A., Bykov, I., Chan, V.S., Chrobak, C.P., Elder, J.D., Guo, H.Y., Guterl, J., Kirschner, A., Lasnier, C.J., Leonard, A.W., Makowski, M.A., McLean, A.G., Snyder, P.B., Thomas, D.M., Tskhakaya, D., Unterberg, E.A., Wang, H.Q., Watkins, J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 56016
container_title Nuclear fusion
container_volume 57
creator Ding, R.
Rudakov, D.L.
Stangeby, P.C.
Wampler, W.R.
Abrams, T.
Brezinsek, S.
Briesemeister, A.
Bykov, I.
Chan, V.S.
Chrobak, C.P.
Elder, J.D.
Guo, H.Y.
Guterl, J.
Kirschner, A.
Lasnier, C.J.
Leonard, A.W.
Makowski, M.A.
McLean, A.G.
Snyder, P.B.
Thomas, D.M.
Tskhakaya, D.
Unterberg, E.A.
Wang, H.Q.
Watkins, J.G.
description Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E  ×  B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.
doi_str_mv 10.1088/1741-4326/aa6451
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1491638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfaa6451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM1oMTITasR0nY9XyEakSCywslms7ravUjuy0Ff89joKYYDrd3e896T0AbjF6xKgsZ5hTnFGSFzMpC8rwGZj8ns7BBKG8yhjD7BJcxbhDCFNMyATs5voonTIRWgcPTpsQe-m0dRvoG7i1m232CfeyN8HKFprgo_UOJgIGk2nTpb0fLknd-lNiT7JNnDva4N3euH74LOu6zpbX4KKRbTQ3P3MKPp6f3hev2ertpV7MV5kipOwzXckSM1xqqvJCU7JmymBerFVeca55iTRCpeS4YpKnVJwqnXIaRStiDKKSTMHd6Otjb0VUtjdqq7xzRvUC0woXpEwQGiGVIsVgGtEFu5fhS2AkhkLF0J4Y2hNjoUlyP0qs78TOH4JLKYRrBOOCCcQKhAvR6SaBD3-A__p-A7kygnE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ding, R. ; Rudakov, D.L. ; Stangeby, P.C. ; Wampler, W.R. ; Abrams, T. ; Brezinsek, S. ; Briesemeister, A. ; Bykov, I. ; Chan, V.S. ; Chrobak, C.P. ; Elder, J.D. ; Guo, H.Y. ; Guterl, J. ; Kirschner, A. ; Lasnier, C.J. ; Leonard, A.W. ; Makowski, M.A. ; McLean, A.G. ; Snyder, P.B. ; Thomas, D.M. ; Tskhakaya, D. ; Unterberg, E.A. ; Wang, H.Q. ; Watkins, J.G.</creator><creatorcontrib>Ding, R. ; Rudakov, D.L. ; Stangeby, P.C. ; Wampler, W.R. ; Abrams, T. ; Brezinsek, S. ; Briesemeister, A. ; Bykov, I. ; Chan, V.S. ; Chrobak, C.P. ; Elder, J.D. ; Guo, H.Y. ; Guterl, J. ; Kirschner, A. ; Lasnier, C.J. ; Leonard, A.W. ; Makowski, M.A. ; McLean, A.G. ; Snyder, P.B. ; Thomas, D.M. ; Tskhakaya, D. ; Unterberg, E.A. ; Wang, H.Q. ; Watkins, J.G. ; General Atomics, San Diego, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E  ×  B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/aa6451</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; deposition ; erosion ; high ; high-Z materials ; impurity ; materials</subject><ispartof>Nuclear fusion, 2017-03, Vol.57 (5), p.56016</ispartof><rights>2017 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</citedby><cites>FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/aa6451/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1491638$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, R.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Stangeby, P.C.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Brezinsek, S.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Chan, V.S.</creatorcontrib><creatorcontrib>Chrobak, C.P.</creatorcontrib><creatorcontrib>Elder, J.D.</creatorcontrib><creatorcontrib>Guo, H.Y.</creatorcontrib><creatorcontrib>Guterl, J.</creatorcontrib><creatorcontrib>Kirschner, A.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Leonard, A.W.</creatorcontrib><creatorcontrib>Makowski, M.A.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Snyder, P.B.</creatorcontrib><creatorcontrib>Thomas, D.M.</creatorcontrib><creatorcontrib>Tskhakaya, D.</creatorcontrib><creatorcontrib>Unterberg, E.A.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Watkins, J.G.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E  ×  B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>deposition</subject><subject>erosion</subject><subject>high</subject><subject>high-Z materials</subject><subject>impurity</subject><subject>materials</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM1oMTITasR0nY9XyEakSCywslms7ravUjuy0Ff89joKYYDrd3e896T0AbjF6xKgsZ5hTnFGSFzMpC8rwGZj8ns7BBKG8yhjD7BJcxbhDCFNMyATs5voonTIRWgcPTpsQe-m0dRvoG7i1m232CfeyN8HKFprgo_UOJgIGk2nTpb0fLknd-lNiT7JNnDva4N3euH74LOu6zpbX4KKRbTQ3P3MKPp6f3hev2ertpV7MV5kipOwzXckSM1xqqvJCU7JmymBerFVeca55iTRCpeS4YpKnVJwqnXIaRStiDKKSTMHd6Otjb0VUtjdqq7xzRvUC0woXpEwQGiGVIsVgGtEFu5fhS2AkhkLF0J4Y2hNjoUlyP0qs78TOH4JLKYRrBOOCCcQKhAvR6SaBD3-A__p-A7kygnE</recordid><startdate>20170324</startdate><enddate>20170324</enddate><creator>Ding, R.</creator><creator>Rudakov, D.L.</creator><creator>Stangeby, P.C.</creator><creator>Wampler, W.R.</creator><creator>Abrams, T.</creator><creator>Brezinsek, S.</creator><creator>Briesemeister, A.</creator><creator>Bykov, I.</creator><creator>Chan, V.S.</creator><creator>Chrobak, C.P.</creator><creator>Elder, J.D.</creator><creator>Guo, H.Y.</creator><creator>Guterl, J.</creator><creator>Kirschner, A.</creator><creator>Lasnier, C.J.</creator><creator>Leonard, A.W.</creator><creator>Makowski, M.A.</creator><creator>McLean, A.G.</creator><creator>Snyder, P.B.</creator><creator>Thomas, D.M.</creator><creator>Tskhakaya, D.</creator><creator>Unterberg, E.A.</creator><creator>Wang, H.Q.</creator><creator>Watkins, J.G.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170324</creationdate><title>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</title><author>Ding, R. ; Rudakov, D.L. ; Stangeby, P.C. ; Wampler, W.R. ; Abrams, T. ; Brezinsek, S. ; Briesemeister, A. ; Bykov, I. ; Chan, V.S. ; Chrobak, C.P. ; Elder, J.D. ; Guo, H.Y. ; Guterl, J. ; Kirschner, A. ; Lasnier, C.J. ; Leonard, A.W. ; Makowski, M.A. ; McLean, A.G. ; Snyder, P.B. ; Thomas, D.M. ; Tskhakaya, D. ; Unterberg, E.A. ; Wang, H.Q. ; Watkins, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>deposition</topic><topic>erosion</topic><topic>high</topic><topic>high-Z materials</topic><topic>impurity</topic><topic>materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, R.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Stangeby, P.C.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Brezinsek, S.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Chan, V.S.</creatorcontrib><creatorcontrib>Chrobak, C.P.</creatorcontrib><creatorcontrib>Elder, J.D.</creatorcontrib><creatorcontrib>Guo, H.Y.</creatorcontrib><creatorcontrib>Guterl, J.</creatorcontrib><creatorcontrib>Kirschner, A.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Leonard, A.W.</creatorcontrib><creatorcontrib>Makowski, M.A.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Snyder, P.B.</creatorcontrib><creatorcontrib>Thomas, D.M.</creatorcontrib><creatorcontrib>Tskhakaya, D.</creatorcontrib><creatorcontrib>Unterberg, E.A.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Watkins, J.G.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, R.</au><au>Rudakov, D.L.</au><au>Stangeby, P.C.</au><au>Wampler, W.R.</au><au>Abrams, T.</au><au>Brezinsek, S.</au><au>Briesemeister, A.</au><au>Bykov, I.</au><au>Chan, V.S.</au><au>Chrobak, C.P.</au><au>Elder, J.D.</au><au>Guo, H.Y.</au><au>Guterl, J.</au><au>Kirschner, A.</au><au>Lasnier, C.J.</au><au>Leonard, A.W.</au><au>Makowski, M.A.</au><au>McLean, A.G.</au><au>Snyder, P.B.</au><au>Thomas, D.M.</au><au>Tskhakaya, D.</au><au>Unterberg, E.A.</au><au>Wang, H.Q.</au><au>Watkins, J.G.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2017-03-24</date><risdate>2017</risdate><volume>57</volume><issue>5</issue><spage>56016</spage><pages>56016-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E  ×  B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/aa6451</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2017-03, Vol.57 (5), p.56016
issn 0029-5515
1741-4326
language eng
recordid cdi_osti_scitechconnect_1491638
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
deposition
erosion
high
high-Z materials
impurity
materials
title Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20understanding%20of%20high-Z%20material%20erosion%20and%20re-deposition%20in%20low-Z%20wall%20environment%20in%20DIII-D&rft.jtitle=Nuclear%20fusion&rft.au=Ding,%20R.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2017-03-24&rft.volume=57&rft.issue=5&rft.spage=56016&rft.pages=56016-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/aa6451&rft_dat=%3Ciop_osti_%3Enfaa6451%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true