Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D
Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been in...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2017-03, Vol.57 (5), p.56016 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 56016 |
container_title | Nuclear fusion |
container_volume | 57 |
creator | Ding, R. Rudakov, D.L. Stangeby, P.C. Wampler, W.R. Abrams, T. Brezinsek, S. Briesemeister, A. Bykov, I. Chan, V.S. Chrobak, C.P. Elder, J.D. Guo, H.Y. Guterl, J. Kirschner, A. Lasnier, C.J. Leonard, A.W. Makowski, M.A. McLean, A.G. Snyder, P.B. Thomas, D.M. Tskhakaya, D. Unterberg, E.A. Wang, H.Q. Watkins, J.G. |
description | Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code. |
doi_str_mv | 10.1088/1741-4326/aa6451 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1491638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfaa6451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM1oMTITasR0nY9XyEakSCywslms7ravUjuy0Ff89joKYYDrd3e896T0AbjF6xKgsZ5hTnFGSFzMpC8rwGZj8ns7BBKG8yhjD7BJcxbhDCFNMyATs5voonTIRWgcPTpsQe-m0dRvoG7i1m232CfeyN8HKFprgo_UOJgIGk2nTpb0fLknd-lNiT7JNnDva4N3euH74LOu6zpbX4KKRbTQ3P3MKPp6f3hev2ertpV7MV5kipOwzXckSM1xqqvJCU7JmymBerFVeca55iTRCpeS4YpKnVJwqnXIaRStiDKKSTMHd6Otjb0VUtjdqq7xzRvUC0woXpEwQGiGVIsVgGtEFu5fhS2AkhkLF0J4Y2hNjoUlyP0qs78TOH4JLKYRrBOOCCcQKhAvR6SaBD3-A__p-A7kygnE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ding, R. ; Rudakov, D.L. ; Stangeby, P.C. ; Wampler, W.R. ; Abrams, T. ; Brezinsek, S. ; Briesemeister, A. ; Bykov, I. ; Chan, V.S. ; Chrobak, C.P. ; Elder, J.D. ; Guo, H.Y. ; Guterl, J. ; Kirschner, A. ; Lasnier, C.J. ; Leonard, A.W. ; Makowski, M.A. ; McLean, A.G. ; Snyder, P.B. ; Thomas, D.M. ; Tskhakaya, D. ; Unterberg, E.A. ; Wang, H.Q. ; Watkins, J.G.</creator><creatorcontrib>Ding, R. ; Rudakov, D.L. ; Stangeby, P.C. ; Wampler, W.R. ; Abrams, T. ; Brezinsek, S. ; Briesemeister, A. ; Bykov, I. ; Chan, V.S. ; Chrobak, C.P. ; Elder, J.D. ; Guo, H.Y. ; Guterl, J. ; Kirschner, A. ; Lasnier, C.J. ; Leonard, A.W. ; Makowski, M.A. ; McLean, A.G. ; Snyder, P.B. ; Thomas, D.M. ; Tskhakaya, D. ; Unterberg, E.A. ; Wang, H.Q. ; Watkins, J.G. ; General Atomics, San Diego, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/aa6451</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; deposition ; erosion ; high ; high-Z materials ; impurity ; materials</subject><ispartof>Nuclear fusion, 2017-03, Vol.57 (5), p.56016</ispartof><rights>2017 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</citedby><cites>FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/aa6451/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1491638$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, R.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Stangeby, P.C.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Brezinsek, S.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Chan, V.S.</creatorcontrib><creatorcontrib>Chrobak, C.P.</creatorcontrib><creatorcontrib>Elder, J.D.</creatorcontrib><creatorcontrib>Guo, H.Y.</creatorcontrib><creatorcontrib>Guterl, J.</creatorcontrib><creatorcontrib>Kirschner, A.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Leonard, A.W.</creatorcontrib><creatorcontrib>Makowski, M.A.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Snyder, P.B.</creatorcontrib><creatorcontrib>Thomas, D.M.</creatorcontrib><creatorcontrib>Tskhakaya, D.</creatorcontrib><creatorcontrib>Unterberg, E.A.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Watkins, J.G.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>deposition</subject><subject>erosion</subject><subject>high</subject><subject>high-Z materials</subject><subject>impurity</subject><subject>materials</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM1oMTITasR0nY9XyEakSCywslms7ravUjuy0Ff89joKYYDrd3e896T0AbjF6xKgsZ5hTnFGSFzMpC8rwGZj8ns7BBKG8yhjD7BJcxbhDCFNMyATs5voonTIRWgcPTpsQe-m0dRvoG7i1m232CfeyN8HKFprgo_UOJgIGk2nTpb0fLknd-lNiT7JNnDva4N3euH74LOu6zpbX4KKRbTQ3P3MKPp6f3hev2ertpV7MV5kipOwzXckSM1xqqvJCU7JmymBerFVeca55iTRCpeS4YpKnVJwqnXIaRStiDKKSTMHd6Otjb0VUtjdqq7xzRvUC0woXpEwQGiGVIsVgGtEFu5fhS2AkhkLF0J4Y2hNjoUlyP0qs78TOH4JLKYRrBOOCCcQKhAvR6SaBD3-A__p-A7kygnE</recordid><startdate>20170324</startdate><enddate>20170324</enddate><creator>Ding, R.</creator><creator>Rudakov, D.L.</creator><creator>Stangeby, P.C.</creator><creator>Wampler, W.R.</creator><creator>Abrams, T.</creator><creator>Brezinsek, S.</creator><creator>Briesemeister, A.</creator><creator>Bykov, I.</creator><creator>Chan, V.S.</creator><creator>Chrobak, C.P.</creator><creator>Elder, J.D.</creator><creator>Guo, H.Y.</creator><creator>Guterl, J.</creator><creator>Kirschner, A.</creator><creator>Lasnier, C.J.</creator><creator>Leonard, A.W.</creator><creator>Makowski, M.A.</creator><creator>McLean, A.G.</creator><creator>Snyder, P.B.</creator><creator>Thomas, D.M.</creator><creator>Tskhakaya, D.</creator><creator>Unterberg, E.A.</creator><creator>Wang, H.Q.</creator><creator>Watkins, J.G.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170324</creationdate><title>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</title><author>Ding, R. ; Rudakov, D.L. ; Stangeby, P.C. ; Wampler, W.R. ; Abrams, T. ; Brezinsek, S. ; Briesemeister, A. ; Bykov, I. ; Chan, V.S. ; Chrobak, C.P. ; Elder, J.D. ; Guo, H.Y. ; Guterl, J. ; Kirschner, A. ; Lasnier, C.J. ; Leonard, A.W. ; Makowski, M.A. ; McLean, A.G. ; Snyder, P.B. ; Thomas, D.M. ; Tskhakaya, D. ; Unterberg, E.A. ; Wang, H.Q. ; Watkins, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d9a81518d4c26d43b5ce176bc2977d780d008a7195a700274cd741ec493ee04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>deposition</topic><topic>erosion</topic><topic>high</topic><topic>high-Z materials</topic><topic>impurity</topic><topic>materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, R.</creatorcontrib><creatorcontrib>Rudakov, D.L.</creatorcontrib><creatorcontrib>Stangeby, P.C.</creatorcontrib><creatorcontrib>Wampler, W.R.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Brezinsek, S.</creatorcontrib><creatorcontrib>Briesemeister, A.</creatorcontrib><creatorcontrib>Bykov, I.</creatorcontrib><creatorcontrib>Chan, V.S.</creatorcontrib><creatorcontrib>Chrobak, C.P.</creatorcontrib><creatorcontrib>Elder, J.D.</creatorcontrib><creatorcontrib>Guo, H.Y.</creatorcontrib><creatorcontrib>Guterl, J.</creatorcontrib><creatorcontrib>Kirschner, A.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Leonard, A.W.</creatorcontrib><creatorcontrib>Makowski, M.A.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Snyder, P.B.</creatorcontrib><creatorcontrib>Thomas, D.M.</creatorcontrib><creatorcontrib>Tskhakaya, D.</creatorcontrib><creatorcontrib>Unterberg, E.A.</creatorcontrib><creatorcontrib>Wang, H.Q.</creatorcontrib><creatorcontrib>Watkins, J.G.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, R.</au><au>Rudakov, D.L.</au><au>Stangeby, P.C.</au><au>Wampler, W.R.</au><au>Abrams, T.</au><au>Brezinsek, S.</au><au>Briesemeister, A.</au><au>Bykov, I.</au><au>Chan, V.S.</au><au>Chrobak, C.P.</au><au>Elder, J.D.</au><au>Guo, H.Y.</au><au>Guterl, J.</au><au>Kirschner, A.</au><au>Lasnier, C.J.</au><au>Leonard, A.W.</au><au>Makowski, M.A.</au><au>McLean, A.G.</au><au>Snyder, P.B.</au><au>Thomas, D.M.</au><au>Tskhakaya, D.</au><au>Unterberg, E.A.</au><au>Wang, H.Q.</au><au>Watkins, J.G.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2017-03-24</date><risdate>2017</risdate><volume>57</volume><issue>5</issue><spage>56016</spage><pages>56016-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/aa6451</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2017-03, Vol.57 (5), p.56016 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_osti_scitechconnect_1491638 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY deposition erosion high high-Z materials impurity materials |
title | Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20understanding%20of%20high-Z%20material%20erosion%20and%20re-deposition%20in%20low-Z%20wall%20environment%20in%20DIII-D&rft.jtitle=Nuclear%20fusion&rft.au=Ding,%20R.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2017-03-24&rft.volume=57&rft.issue=5&rft.spage=56016&rft.pages=56016-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/aa6451&rft_dat=%3Ciop_osti_%3Enfaa6451%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |