Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters

Because of the small size and large surface area of thiolate-protected Au nanoclusters (NCs), the protecting ligands are expected to play a substantial role in modulating the structure and properties, particularly in the solution phase. However, little is known on how thiolate ligands explicitly mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-11, Vol.140 (45), p.15430-15436
Hauptverfasser: Chevrier, Daniel M, Raich, Lluís, Rovira, Carme, Das, Anindita, Luo, Zhentao, Yao, Qiaofeng, Chatt, Amares, Xie, Jianping, Jin, Rongchao, Akola, Jaakko, Zhang, Peng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15436
container_issue 45
container_start_page 15430
container_title Journal of the American Chemical Society
container_volume 140
creator Chevrier, Daniel M
Raich, Lluís
Rovira, Carme
Das, Anindita
Luo, Zhentao
Yao, Qiaofeng
Chatt, Amares
Xie, Jianping
Jin, Rongchao
Akola, Jaakko
Zhang, Peng
description Because of the small size and large surface area of thiolate-protected Au nanoclusters (NCs), the protecting ligands are expected to play a substantial role in modulating the structure and properties, particularly in the solution phase. However, little is known on how thiolate ligands explicitly modulate the structural properties of the NCs at atomic level, even though this information is critical for predicting the performance of Au NCs in application settings including as a catalyst interacting with small molecules and as a sensor interacting with biomolecular systems. Here, we report a combined experimental and theoretical study, using synchrotron X-ray spectroscopy and quantum mechanics/molecular mechanics simulations, that investigates how the protecting ligands impact the structure and properties of small Au18(SR)14 NCs. Two representative ligand types, smaller aliphatic cyclohexanethiolate and larger hydrophilic glutathione, are selected, and their structures are followed experimentally in both solid and solution phases. It was found that cyclohexanethiolate ligands are significantly perturbed by toluene solvent molecules, resulting in structural changes that cause disorder on the surface of Au18(SR)14 NCs. In particular, large surface cavities in the ligand shell are created by interactions between toluene and cyclohexanethiolate. The appearance of these small molecule-accessible sites on the  NC surface demonstrates the ability of Au NCs to act as a catalyst for organic phase reactions. In contrast, glutathione ligands encapsulate the Au NC core via intermolecular interactions, minimizing structural changes caused by interactions with water molecules. The much better protection from glutathione ligands imparts a rigidified surface and ligand structure, making the NCs desirable for biomedical applications due to the high stability and also offering a structural-based explanation for the enhanced photoluminescence often reported for glutathione-protected Au NCs.
doi_str_mv 10.1021/jacs.8b09440
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1491195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123717721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-c7cb33155008d79daf58c81c2fb32000ac2eb8308cf752c919f5ad505c6941b63</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EoqWwMaOIiYEUnx0n8YhKKUgFhpbZci4OTeXEECcDG-_AG_IkpGqBhel00nf__foIOQU6Bsrgaq3Rj9OMyiiie2QIgtFQAIv3yZBSysIkjfmAHHm_7teIpXBIBpxyLhMhh-TmwVmDndVNuEBtTTAvX3SdB9OiMNj6oKyDRaWtDWbO5l8fn8tV6axuTfCoa4e2861p_DE5KLT15mQ3R-T5drqc3IXzp9n95Hoeai6gDTHBjHMQgtI0T2SuC5FiCsiKjLO-nEZmspTTFItEMJQgC6FzQQXGMoIs5iNyvs11vi2Vx7I1uEJX131VBZEEkKKHLrbQa-PeOuNbVZUejbW6Nq7zigHjCSQJgx693KLYOO8bU6jXpqx0866Aqo1ctZGrdnJ7_GyX3GWVyX_hH5t_rzdXa9c1dW_j_6xv9siBpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123717721</pqid></control><display><type>article</type><title>Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters</title><source>American Chemical Society Journals</source><creator>Chevrier, Daniel M ; Raich, Lluís ; Rovira, Carme ; Das, Anindita ; Luo, Zhentao ; Yao, Qiaofeng ; Chatt, Amares ; Xie, Jianping ; Jin, Rongchao ; Akola, Jaakko ; Zhang, Peng</creator><creatorcontrib>Chevrier, Daniel M ; Raich, Lluís ; Rovira, Carme ; Das, Anindita ; Luo, Zhentao ; Yao, Qiaofeng ; Chatt, Amares ; Xie, Jianping ; Jin, Rongchao ; Akola, Jaakko ; Zhang, Peng ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Because of the small size and large surface area of thiolate-protected Au nanoclusters (NCs), the protecting ligands are expected to play a substantial role in modulating the structure and properties, particularly in the solution phase. However, little is known on how thiolate ligands explicitly modulate the structural properties of the NCs at atomic level, even though this information is critical for predicting the performance of Au NCs in application settings including as a catalyst interacting with small molecules and as a sensor interacting with biomolecular systems. Here, we report a combined experimental and theoretical study, using synchrotron X-ray spectroscopy and quantum mechanics/molecular mechanics simulations, that investigates how the protecting ligands impact the structure and properties of small Au18(SR)14 NCs. Two representative ligand types, smaller aliphatic cyclohexanethiolate and larger hydrophilic glutathione, are selected, and their structures are followed experimentally in both solid and solution phases. It was found that cyclohexanethiolate ligands are significantly perturbed by toluene solvent molecules, resulting in structural changes that cause disorder on the surface of Au18(SR)14 NCs. In particular, large surface cavities in the ligand shell are created by interactions between toluene and cyclohexanethiolate. The appearance of these small molecule-accessible sites on the  NC surface demonstrates the ability of Au NCs to act as a catalyst for organic phase reactions. In contrast, glutathione ligands encapsulate the Au NC core via intermolecular interactions, minimizing structural changes caused by interactions with water molecules. The much better protection from glutathione ligands imparts a rigidified surface and ligand structure, making the NCs desirable for biomedical applications due to the high stability and also offering a structural-based explanation for the enhanced photoluminescence often reported for glutathione-protected Au NCs.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b09440</identifier><identifier>PMID: 30339759</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-11, Vol.140 (45), p.15430-15436</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-c7cb33155008d79daf58c81c2fb32000ac2eb8308cf752c919f5ad505c6941b63</citedby><cites>FETCH-LOGICAL-a351t-c7cb33155008d79daf58c81c2fb32000ac2eb8308cf752c919f5ad505c6941b63</cites><orcidid>0000-0001-9037-7095 ; 0000-0003-1477-5010 ; 0000-0002-2525-8345 ; 0000-0003-3603-0175 ; 0000-0002-5129-9343 ; 0000-0002-3074-046X ; 0000-0002-0914-6714 ; 0000-0002-3254-5799 ; 0000000190377095 ; 0000000336030175 ; 0000000209146714 ; 0000000251299343 ; 0000000232545799 ; 000000023074046X ; 0000000314775010 ; 0000000225258345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b09440$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b09440$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30339759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1491195$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chevrier, Daniel M</creatorcontrib><creatorcontrib>Raich, Lluís</creatorcontrib><creatorcontrib>Rovira, Carme</creatorcontrib><creatorcontrib>Das, Anindita</creatorcontrib><creatorcontrib>Luo, Zhentao</creatorcontrib><creatorcontrib>Yao, Qiaofeng</creatorcontrib><creatorcontrib>Chatt, Amares</creatorcontrib><creatorcontrib>Xie, Jianping</creatorcontrib><creatorcontrib>Jin, Rongchao</creatorcontrib><creatorcontrib>Akola, Jaakko</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Because of the small size and large surface area of thiolate-protected Au nanoclusters (NCs), the protecting ligands are expected to play a substantial role in modulating the structure and properties, particularly in the solution phase. However, little is known on how thiolate ligands explicitly modulate the structural properties of the NCs at atomic level, even though this information is critical for predicting the performance of Au NCs in application settings including as a catalyst interacting with small molecules and as a sensor interacting with biomolecular systems. Here, we report a combined experimental and theoretical study, using synchrotron X-ray spectroscopy and quantum mechanics/molecular mechanics simulations, that investigates how the protecting ligands impact the structure and properties of small Au18(SR)14 NCs. Two representative ligand types, smaller aliphatic cyclohexanethiolate and larger hydrophilic glutathione, are selected, and their structures are followed experimentally in both solid and solution phases. It was found that cyclohexanethiolate ligands are significantly perturbed by toluene solvent molecules, resulting in structural changes that cause disorder on the surface of Au18(SR)14 NCs. In particular, large surface cavities in the ligand shell are created by interactions between toluene and cyclohexanethiolate. The appearance of these small molecule-accessible sites on the  NC surface demonstrates the ability of Au NCs to act as a catalyst for organic phase reactions. In contrast, glutathione ligands encapsulate the Au NC core via intermolecular interactions, minimizing structural changes caused by interactions with water molecules. The much better protection from glutathione ligands imparts a rigidified surface and ligand structure, making the NCs desirable for biomedical applications due to the high stability and also offering a structural-based explanation for the enhanced photoluminescence often reported for glutathione-protected Au NCs.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAQhi0EoqWwMaOIiYEUnx0n8YhKKUgFhpbZci4OTeXEECcDG-_AG_IkpGqBhel00nf__foIOQU6Bsrgaq3Rj9OMyiiie2QIgtFQAIv3yZBSysIkjfmAHHm_7teIpXBIBpxyLhMhh-TmwVmDndVNuEBtTTAvX3SdB9OiMNj6oKyDRaWtDWbO5l8fn8tV6axuTfCoa4e2861p_DE5KLT15mQ3R-T5drqc3IXzp9n95Hoeai6gDTHBjHMQgtI0T2SuC5FiCsiKjLO-nEZmspTTFItEMJQgC6FzQQXGMoIs5iNyvs11vi2Vx7I1uEJX131VBZEEkKKHLrbQa-PeOuNbVZUejbW6Nq7zigHjCSQJgx693KLYOO8bU6jXpqx0866Aqo1ctZGrdnJ7_GyX3GWVyX_hH5t_rzdXa9c1dW_j_6xv9siBpA</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Chevrier, Daniel M</creator><creator>Raich, Lluís</creator><creator>Rovira, Carme</creator><creator>Das, Anindita</creator><creator>Luo, Zhentao</creator><creator>Yao, Qiaofeng</creator><creator>Chatt, Amares</creator><creator>Xie, Jianping</creator><creator>Jin, Rongchao</creator><creator>Akola, Jaakko</creator><creator>Zhang, Peng</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9037-7095</orcidid><orcidid>https://orcid.org/0000-0003-1477-5010</orcidid><orcidid>https://orcid.org/0000-0002-2525-8345</orcidid><orcidid>https://orcid.org/0000-0003-3603-0175</orcidid><orcidid>https://orcid.org/0000-0002-5129-9343</orcidid><orcidid>https://orcid.org/0000-0002-3074-046X</orcidid><orcidid>https://orcid.org/0000-0002-0914-6714</orcidid><orcidid>https://orcid.org/0000-0002-3254-5799</orcidid><orcidid>https://orcid.org/0000000190377095</orcidid><orcidid>https://orcid.org/0000000336030175</orcidid><orcidid>https://orcid.org/0000000209146714</orcidid><orcidid>https://orcid.org/0000000251299343</orcidid><orcidid>https://orcid.org/0000000232545799</orcidid><orcidid>https://orcid.org/000000023074046X</orcidid><orcidid>https://orcid.org/0000000314775010</orcidid><orcidid>https://orcid.org/0000000225258345</orcidid></search><sort><creationdate>20181114</creationdate><title>Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters</title><author>Chevrier, Daniel M ; Raich, Lluís ; Rovira, Carme ; Das, Anindita ; Luo, Zhentao ; Yao, Qiaofeng ; Chatt, Amares ; Xie, Jianping ; Jin, Rongchao ; Akola, Jaakko ; Zhang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-c7cb33155008d79daf58c81c2fb32000ac2eb8308cf752c919f5ad505c6941b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chevrier, Daniel M</creatorcontrib><creatorcontrib>Raich, Lluís</creatorcontrib><creatorcontrib>Rovira, Carme</creatorcontrib><creatorcontrib>Das, Anindita</creatorcontrib><creatorcontrib>Luo, Zhentao</creatorcontrib><creatorcontrib>Yao, Qiaofeng</creatorcontrib><creatorcontrib>Chatt, Amares</creatorcontrib><creatorcontrib>Xie, Jianping</creatorcontrib><creatorcontrib>Jin, Rongchao</creatorcontrib><creatorcontrib>Akola, Jaakko</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chevrier, Daniel M</au><au>Raich, Lluís</au><au>Rovira, Carme</au><au>Das, Anindita</au><au>Luo, Zhentao</au><au>Yao, Qiaofeng</au><au>Chatt, Amares</au><au>Xie, Jianping</au><au>Jin, Rongchao</au><au>Akola, Jaakko</au><au>Zhang, Peng</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-11-14</date><risdate>2018</risdate><volume>140</volume><issue>45</issue><spage>15430</spage><epage>15436</epage><pages>15430-15436</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Because of the small size and large surface area of thiolate-protected Au nanoclusters (NCs), the protecting ligands are expected to play a substantial role in modulating the structure and properties, particularly in the solution phase. However, little is known on how thiolate ligands explicitly modulate the structural properties of the NCs at atomic level, even though this information is critical for predicting the performance of Au NCs in application settings including as a catalyst interacting with small molecules and as a sensor interacting with biomolecular systems. Here, we report a combined experimental and theoretical study, using synchrotron X-ray spectroscopy and quantum mechanics/molecular mechanics simulations, that investigates how the protecting ligands impact the structure and properties of small Au18(SR)14 NCs. Two representative ligand types, smaller aliphatic cyclohexanethiolate and larger hydrophilic glutathione, are selected, and their structures are followed experimentally in both solid and solution phases. It was found that cyclohexanethiolate ligands are significantly perturbed by toluene solvent molecules, resulting in structural changes that cause disorder on the surface of Au18(SR)14 NCs. In particular, large surface cavities in the ligand shell are created by interactions between toluene and cyclohexanethiolate. The appearance of these small molecule-accessible sites on the  NC surface demonstrates the ability of Au NCs to act as a catalyst for organic phase reactions. In contrast, glutathione ligands encapsulate the Au NC core via intermolecular interactions, minimizing structural changes caused by interactions with water molecules. The much better protection from glutathione ligands imparts a rigidified surface and ligand structure, making the NCs desirable for biomedical applications due to the high stability and also offering a structural-based explanation for the enhanced photoluminescence often reported for glutathione-protected Au NCs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30339759</pmid><doi>10.1021/jacs.8b09440</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9037-7095</orcidid><orcidid>https://orcid.org/0000-0003-1477-5010</orcidid><orcidid>https://orcid.org/0000-0002-2525-8345</orcidid><orcidid>https://orcid.org/0000-0003-3603-0175</orcidid><orcidid>https://orcid.org/0000-0002-5129-9343</orcidid><orcidid>https://orcid.org/0000-0002-3074-046X</orcidid><orcidid>https://orcid.org/0000-0002-0914-6714</orcidid><orcidid>https://orcid.org/0000-0002-3254-5799</orcidid><orcidid>https://orcid.org/0000000190377095</orcidid><orcidid>https://orcid.org/0000000336030175</orcidid><orcidid>https://orcid.org/0000000209146714</orcidid><orcidid>https://orcid.org/0000000251299343</orcidid><orcidid>https://orcid.org/0000000232545799</orcidid><orcidid>https://orcid.org/000000023074046X</orcidid><orcidid>https://orcid.org/0000000314775010</orcidid><orcidid>https://orcid.org/0000000225258345</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-11, Vol.140 (45), p.15430-15436
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1491195
source American Chemical Society Journals
title Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Scale%20Ligand%20Effects%20in%20Small%20Gold%E2%80%93Thiolate%20Nanoclusters&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chevrier,%20Daniel%20M&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-11-14&rft.volume=140&rft.issue=45&rft.spage=15430&rft.epage=15436&rft.pages=15430-15436&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b09440&rft_dat=%3Cproquest_osti_%3E2123717721%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123717721&rft_id=info:pmid/30339759&rfr_iscdi=true