Glassy Phase of Optimal Quantum Control
We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy cr...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-01, Vol.122 (2), p.020601-020601, Article 020601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 020601 |
---|---|
container_issue | 2 |
container_start_page | 020601 |
container_title | Physical review letters |
container_volume | 122 |
creator | Day, Alexandre G R Bukov, Marin Weinberg, Phillip Mehta, Pankaj Sels, Dries |
description | We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes. |
doi_str_mv | 10.1103/PhysRevLett.122.020601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1490916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179523487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-8b17e2fdfc3b99f878e5e16519aca578d0572b98342c95d5a8d1dbb8701f8d533</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMobk7_wij6oC-d9yZtkzzK0CkMNkWfQ5qmbKNrZpMK-_d2dIr4dF--czj3I2SMMEEEdr9c7f2b_ZrbECZI6QQoZIAnZIjAZcwRk1MyBGAYSwA-IBfebwAAaSbOyYABp8AYDsntrNLe76PlSnsbuTJa7MJ6q6votdV1aLfR1NWhcdUlOSt15e3V8Y7Ix9Pj-_Q5ni9mL9OHeWySjIdY5MgtLYvSsFzKUnBhU4tZilIbnXJRQMppLgVLqJFpkWpRYJHnggOWokgZG5Hrvtf5sFberIM1K-Pq2pqgMJEgMeugux7aNe6ztT6o7dobW1W6tq71iiKXKWWJ4B168w_duLapuxcOFMUko92aEcl6yjTO-8aWatd0Fpq9QlAH3-qPb9X5Vr3vLjg-1rf51ha_sR_B7Bs0DHuV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172146298</pqid></control><display><type>article</type><title>Glassy Phase of Optimal Quantum Control</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Day, Alexandre G R ; Bukov, Marin ; Weinberg, Phillip ; Mehta, Pankaj ; Sels, Dries</creator><creatorcontrib>Day, Alexandre G R ; Bukov, Marin ; Weinberg, Phillip ; Mehta, Pankaj ; Sels, Dries</creatorcontrib><description>We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.020601</identifier><identifier>PMID: 30720331</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Broken symmetry ; Critical point ; Ising model ; Landscape ; Machine learning ; Manifolds (mathematics) ; Mathematical models ; Multibody systems ; Optimization ; Spin glasses</subject><ispartof>Physical review letters, 2019-01, Vol.122 (2), p.020601-020601, Article 020601</ispartof><rights>Copyright American Physical Society Jan 18, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-8b17e2fdfc3b99f878e5e16519aca578d0572b98342c95d5a8d1dbb8701f8d533</citedby><cites>FETCH-LOGICAL-c467t-8b17e2fdfc3b99f878e5e16519aca578d0572b98342c95d5a8d1dbb8701f8d533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,2880,2881,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30720331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1490916$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Day, Alexandre G R</creatorcontrib><creatorcontrib>Bukov, Marin</creatorcontrib><creatorcontrib>Weinberg, Phillip</creatorcontrib><creatorcontrib>Mehta, Pankaj</creatorcontrib><creatorcontrib>Sels, Dries</creatorcontrib><title>Glassy Phase of Optimal Quantum Control</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes.</description><subject>Broken symmetry</subject><subject>Critical point</subject><subject>Ising model</subject><subject>Landscape</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical models</subject><subject>Multibody systems</subject><subject>Optimization</subject><subject>Spin glasses</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAUhYMobk7_wij6oC-d9yZtkzzK0CkMNkWfQ5qmbKNrZpMK-_d2dIr4dF--czj3I2SMMEEEdr9c7f2b_ZrbECZI6QQoZIAnZIjAZcwRk1MyBGAYSwA-IBfebwAAaSbOyYABp8AYDsntrNLe76PlSnsbuTJa7MJ6q6votdV1aLfR1NWhcdUlOSt15e3V8Y7Ix9Pj-_Q5ni9mL9OHeWySjIdY5MgtLYvSsFzKUnBhU4tZilIbnXJRQMppLgVLqJFpkWpRYJHnggOWokgZG5Hrvtf5sFberIM1K-Pq2pqgMJEgMeugux7aNe6ztT6o7dobW1W6tq71iiKXKWWJ4B168w_duLapuxcOFMUko92aEcl6yjTO-8aWatd0Fpq9QlAH3-qPb9X5Vr3vLjg-1rf51ha_sR_B7Bs0DHuV</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Day, Alexandre G R</creator><creator>Bukov, Marin</creator><creator>Weinberg, Phillip</creator><creator>Mehta, Pankaj</creator><creator>Sels, Dries</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20190118</creationdate><title>Glassy Phase of Optimal Quantum Control</title><author>Day, Alexandre G R ; Bukov, Marin ; Weinberg, Phillip ; Mehta, Pankaj ; Sels, Dries</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-8b17e2fdfc3b99f878e5e16519aca578d0572b98342c95d5a8d1dbb8701f8d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Broken symmetry</topic><topic>Critical point</topic><topic>Ising model</topic><topic>Landscape</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical models</topic><topic>Multibody systems</topic><topic>Optimization</topic><topic>Spin glasses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Day, Alexandre G R</creatorcontrib><creatorcontrib>Bukov, Marin</creatorcontrib><creatorcontrib>Weinberg, Phillip</creatorcontrib><creatorcontrib>Mehta, Pankaj</creatorcontrib><creatorcontrib>Sels, Dries</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Day, Alexandre G R</au><au>Bukov, Marin</au><au>Weinberg, Phillip</au><au>Mehta, Pankaj</au><au>Sels, Dries</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glassy Phase of Optimal Quantum Control</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-01-18</date><risdate>2019</risdate><volume>122</volume><issue>2</issue><spage>020601</spage><epage>020601</epage><pages>020601-020601</pages><artnum>020601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30720331</pmid><doi>10.1103/PhysRevLett.122.020601</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-01, Vol.122 (2), p.020601-020601, Article 020601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1490916 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Broken symmetry Critical point Ising model Landscape Machine learning Manifolds (mathematics) Mathematical models Multibody systems Optimization Spin glasses |
title | Glassy Phase of Optimal Quantum Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glassy%20Phase%20of%20Optimal%20Quantum%20Control&rft.jtitle=Physical%20review%20letters&rft.au=Day,%20Alexandre%20G%20R&rft.date=2019-01-18&rft.volume=122&rft.issue=2&rft.spage=020601&rft.epage=020601&rft.pages=020601-020601&rft.artnum=020601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.020601&rft_dat=%3Cproquest_osti_%3E2179523487%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172146298&rft_id=info:pmid/30720331&rfr_iscdi=true |