Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array
The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many ind...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2018-10, Vol.904 (C), p.44-63 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | C |
container_start_page | 44 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 904 |
creator | Zorn, J. White, R. Watson, J.J. Armstrong, T.P. Balzer, A. Barcelo, M. Berge, D. Bose, R. Brown, A.M. Bryan, M. Chadwick, P.M. Clark, P. Costantini, H. Cotter, G. Dangeon, L. Daniel, M. De Franco, A. Deiml, P. Fasola, G. Funk, S. Gebyehu, M. Gironnet, J. Graham, J.A. Greenshaw, T. Hinton, J.A. Kraus, M. Lapington, J.S. Laporte, P. Leach, S.A. Le Blanc, O. Malouf, A. Molyneux, P. Moore, P. Prokoph, H. Okumura, A. Ross, D. Rowell, G. Sapozhnikov, L. Schoorlemmer, H. Sol, H. Stephan, M. Tajima, H. Tibaldo, L. Varner, G. Zink, A. |
description | The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 × 6 mm2 pixels, leading to a low-cost (∼150 k€), compact (0.5 m × 0.5 m), and light (∼45 kg) camera with 2048 pixels providing a camera FoV of ∼9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the γ-ray energy range of 1–300 TeV, and at impact distances up to ∼500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∼900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory. |
doi_str_mv | 10.1016/j.nima.2018.06.078 |
format | Article |
fullrecord | <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1490682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900218308143</els_id><sourcerecordid>oai_HAL_hal_01846808v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a5099dc0272f455ee3d6b92aa695b5c80c158d86ad64abc180153468052923733</originalsourceid><addsrcrecordid>eNp9kcHK1DAQx4MouH76Ap6CNw-tSdqkKXhZyve5wooXPYfZdGqzdpslCQurFx_CJ_RJTFjRm3MZmPn_hpn5E_KSs5ozrt4c69WdoBaM65qpmnX6Edlw3Ymql516TDZZpKueMfGUPIvxyHL0nd6Q78MMAWzC4CIk51cK60gTxuTWL9RPdNjdD9WHXz9-bqmFEwag5-CTT9cz0skHmmak8QTLUkX3DQu6YLT-jLHQpTvMGHD96i__ehRCgOtz8mSCJeKLP_mOfH64_zTsqv3Hd--H7b6yLZOpAsn6frRMdGJqpURsRnXoBYDq5UFazSyXetQKRtXCwXLNuGxapZkUvWi6prkjr25zfb7KROsS2tn6dUWbDG97prTIotc30QyLOYf8zXA1HpzZbfem1PJry1B94VkrblobfIwBp78AZ6b4YY6m-GGKH4Ypk_3I0NsbhPnUi8NQNsHV4uhCWWT07n_4b30klGs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zorn, J. ; White, R. ; Watson, J.J. ; Armstrong, T.P. ; Balzer, A. ; Barcelo, M. ; Berge, D. ; Bose, R. ; Brown, A.M. ; Bryan, M. ; Chadwick, P.M. ; Clark, P. ; Costantini, H. ; Cotter, G. ; Dangeon, L. ; Daniel, M. ; De Franco, A. ; Deiml, P. ; Fasola, G. ; Funk, S. ; Gebyehu, M. ; Gironnet, J. ; Graham, J.A. ; Greenshaw, T. ; Hinton, J.A. ; Kraus, M. ; Lapington, J.S. ; Laporte, P. ; Leach, S.A. ; Le Blanc, O. ; Malouf, A. ; Molyneux, P. ; Moore, P. ; Prokoph, H. ; Okumura, A. ; Ross, D. ; Rowell, G. ; Sapozhnikov, L. ; Schoorlemmer, H. ; Sol, H. ; Stephan, M. ; Tajima, H. ; Tibaldo, L. ; Varner, G. ; Zink, A.</creator><creatorcontrib>Zorn, J. ; White, R. ; Watson, J.J. ; Armstrong, T.P. ; Balzer, A. ; Barcelo, M. ; Berge, D. ; Bose, R. ; Brown, A.M. ; Bryan, M. ; Chadwick, P.M. ; Clark, P. ; Costantini, H. ; Cotter, G. ; Dangeon, L. ; Daniel, M. ; De Franco, A. ; Deiml, P. ; Fasola, G. ; Funk, S. ; Gebyehu, M. ; Gironnet, J. ; Graham, J.A. ; Greenshaw, T. ; Hinton, J.A. ; Kraus, M. ; Lapington, J.S. ; Laporte, P. ; Leach, S.A. ; Le Blanc, O. ; Malouf, A. ; Molyneux, P. ; Moore, P. ; Prokoph, H. ; Okumura, A. ; Ross, D. ; Rowell, G. ; Sapozhnikov, L. ; Schoorlemmer, H. ; Sol, H. ; Stephan, M. ; Tajima, H. ; Tibaldo, L. ; Varner, G. ; Zink, A. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><description>The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 × 6 mm2 pixels, leading to a low-cost (∼150 k€), compact (0.5 m × 0.5 m), and light (∼45 kg) camera with 2048 pixels providing a camera FoV of ∼9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the γ-ray energy range of 1–300 TeV, and at impact distances up to ∼500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∼900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2018.06.078</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Cherenkov telescope array ; Full-waveform readout ; Gamma-rays ; Imaging atmospheric Cherenkov telescopes ; Instrumentation and Detectors ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Physics</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2018-10, Vol.904 (C), p.44-63</ispartof><rights>2018 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a5099dc0272f455ee3d6b92aa695b5c80c158d86ad64abc180153468052923733</citedby><cites>FETCH-LOGICAL-c405t-a5099dc0272f455ee3d6b92aa695b5c80c158d86ad64abc180153468052923733</cites><orcidid>0000-0002-2918-1824 ; 0000-0002-9975-1829 ; 0000-0002-9516-1581 ; 0000-0001-9309-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2018.06.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01846808$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1490682$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zorn, J.</creatorcontrib><creatorcontrib>White, R.</creatorcontrib><creatorcontrib>Watson, J.J.</creatorcontrib><creatorcontrib>Armstrong, T.P.</creatorcontrib><creatorcontrib>Balzer, A.</creatorcontrib><creatorcontrib>Barcelo, M.</creatorcontrib><creatorcontrib>Berge, D.</creatorcontrib><creatorcontrib>Bose, R.</creatorcontrib><creatorcontrib>Brown, A.M.</creatorcontrib><creatorcontrib>Bryan, M.</creatorcontrib><creatorcontrib>Chadwick, P.M.</creatorcontrib><creatorcontrib>Clark, P.</creatorcontrib><creatorcontrib>Costantini, H.</creatorcontrib><creatorcontrib>Cotter, G.</creatorcontrib><creatorcontrib>Dangeon, L.</creatorcontrib><creatorcontrib>Daniel, M.</creatorcontrib><creatorcontrib>De Franco, A.</creatorcontrib><creatorcontrib>Deiml, P.</creatorcontrib><creatorcontrib>Fasola, G.</creatorcontrib><creatorcontrib>Funk, S.</creatorcontrib><creatorcontrib>Gebyehu, M.</creatorcontrib><creatorcontrib>Gironnet, J.</creatorcontrib><creatorcontrib>Graham, J.A.</creatorcontrib><creatorcontrib>Greenshaw, T.</creatorcontrib><creatorcontrib>Hinton, J.A.</creatorcontrib><creatorcontrib>Kraus, M.</creatorcontrib><creatorcontrib>Lapington, J.S.</creatorcontrib><creatorcontrib>Laporte, P.</creatorcontrib><creatorcontrib>Leach, S.A.</creatorcontrib><creatorcontrib>Le Blanc, O.</creatorcontrib><creatorcontrib>Malouf, A.</creatorcontrib><creatorcontrib>Molyneux, P.</creatorcontrib><creatorcontrib>Moore, P.</creatorcontrib><creatorcontrib>Prokoph, H.</creatorcontrib><creatorcontrib>Okumura, A.</creatorcontrib><creatorcontrib>Ross, D.</creatorcontrib><creatorcontrib>Rowell, G.</creatorcontrib><creatorcontrib>Sapozhnikov, L.</creatorcontrib><creatorcontrib>Schoorlemmer, H.</creatorcontrib><creatorcontrib>Sol, H.</creatorcontrib><creatorcontrib>Stephan, M.</creatorcontrib><creatorcontrib>Tajima, H.</creatorcontrib><creatorcontrib>Tibaldo, L.</creatorcontrib><creatorcontrib>Varner, G.</creatorcontrib><creatorcontrib>Zink, A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><title>Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 × 6 mm2 pixels, leading to a low-cost (∼150 k€), compact (0.5 m × 0.5 m), and light (∼45 kg) camera with 2048 pixels providing a camera FoV of ∼9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the γ-ray energy range of 1–300 TeV, and at impact distances up to ∼500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∼900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.</description><subject>Cherenkov telescope array</subject><subject>Full-waveform readout</subject><subject>Gamma-rays</subject><subject>Imaging atmospheric Cherenkov telescopes</subject><subject>Instrumentation and Detectors</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Physics</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kcHK1DAQx4MouH76Ap6CNw-tSdqkKXhZyve5wooXPYfZdGqzdpslCQurFx_CJ_RJTFjRm3MZmPn_hpn5E_KSs5ozrt4c69WdoBaM65qpmnX6Edlw3Ymql516TDZZpKueMfGUPIvxyHL0nd6Q78MMAWzC4CIk51cK60gTxuTWL9RPdNjdD9WHXz9-bqmFEwag5-CTT9cz0skHmmak8QTLUkX3DQu6YLT-jLHQpTvMGHD96i__ehRCgOtz8mSCJeKLP_mOfH64_zTsqv3Hd--H7b6yLZOpAsn6frRMdGJqpURsRnXoBYDq5UFazSyXetQKRtXCwXLNuGxapZkUvWi6prkjr25zfb7KROsS2tn6dUWbDG97prTIotc30QyLOYf8zXA1HpzZbfem1PJry1B94VkrblobfIwBp78AZ6b4YY6m-GGKH4Ypk_3I0NsbhPnUi8NQNsHV4uhCWWT07n_4b30klGs</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zorn, J.</creator><creator>White, R.</creator><creator>Watson, J.J.</creator><creator>Armstrong, T.P.</creator><creator>Balzer, A.</creator><creator>Barcelo, M.</creator><creator>Berge, D.</creator><creator>Bose, R.</creator><creator>Brown, A.M.</creator><creator>Bryan, M.</creator><creator>Chadwick, P.M.</creator><creator>Clark, P.</creator><creator>Costantini, H.</creator><creator>Cotter, G.</creator><creator>Dangeon, L.</creator><creator>Daniel, M.</creator><creator>De Franco, A.</creator><creator>Deiml, P.</creator><creator>Fasola, G.</creator><creator>Funk, S.</creator><creator>Gebyehu, M.</creator><creator>Gironnet, J.</creator><creator>Graham, J.A.</creator><creator>Greenshaw, T.</creator><creator>Hinton, J.A.</creator><creator>Kraus, M.</creator><creator>Lapington, J.S.</creator><creator>Laporte, P.</creator><creator>Leach, S.A.</creator><creator>Le Blanc, O.</creator><creator>Malouf, A.</creator><creator>Molyneux, P.</creator><creator>Moore, P.</creator><creator>Prokoph, H.</creator><creator>Okumura, A.</creator><creator>Ross, D.</creator><creator>Rowell, G.</creator><creator>Sapozhnikov, L.</creator><creator>Schoorlemmer, H.</creator><creator>Sol, H.</creator><creator>Stephan, M.</creator><creator>Tajima, H.</creator><creator>Tibaldo, L.</creator><creator>Varner, G.</creator><creator>Zink, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2918-1824</orcidid><orcidid>https://orcid.org/0000-0002-9975-1829</orcidid><orcidid>https://orcid.org/0000-0002-9516-1581</orcidid><orcidid>https://orcid.org/0000-0001-9309-0700</orcidid></search><sort><creationdate>20181001</creationdate><title>Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array</title><author>Zorn, J. ; White, R. ; Watson, J.J. ; Armstrong, T.P. ; Balzer, A. ; Barcelo, M. ; Berge, D. ; Bose, R. ; Brown, A.M. ; Bryan, M. ; Chadwick, P.M. ; Clark, P. ; Costantini, H. ; Cotter, G. ; Dangeon, L. ; Daniel, M. ; De Franco, A. ; Deiml, P. ; Fasola, G. ; Funk, S. ; Gebyehu, M. ; Gironnet, J. ; Graham, J.A. ; Greenshaw, T. ; Hinton, J.A. ; Kraus, M. ; Lapington, J.S. ; Laporte, P. ; Leach, S.A. ; Le Blanc, O. ; Malouf, A. ; Molyneux, P. ; Moore, P. ; Prokoph, H. ; Okumura, A. ; Ross, D. ; Rowell, G. ; Sapozhnikov, L. ; Schoorlemmer, H. ; Sol, H. ; Stephan, M. ; Tajima, H. ; Tibaldo, L. ; Varner, G. ; Zink, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a5099dc0272f455ee3d6b92aa695b5c80c158d86ad64abc180153468052923733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cherenkov telescope array</topic><topic>Full-waveform readout</topic><topic>Gamma-rays</topic><topic>Imaging atmospheric Cherenkov telescopes</topic><topic>Instrumentation and Detectors</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zorn, J.</creatorcontrib><creatorcontrib>White, R.</creatorcontrib><creatorcontrib>Watson, J.J.</creatorcontrib><creatorcontrib>Armstrong, T.P.</creatorcontrib><creatorcontrib>Balzer, A.</creatorcontrib><creatorcontrib>Barcelo, M.</creatorcontrib><creatorcontrib>Berge, D.</creatorcontrib><creatorcontrib>Bose, R.</creatorcontrib><creatorcontrib>Brown, A.M.</creatorcontrib><creatorcontrib>Bryan, M.</creatorcontrib><creatorcontrib>Chadwick, P.M.</creatorcontrib><creatorcontrib>Clark, P.</creatorcontrib><creatorcontrib>Costantini, H.</creatorcontrib><creatorcontrib>Cotter, G.</creatorcontrib><creatorcontrib>Dangeon, L.</creatorcontrib><creatorcontrib>Daniel, M.</creatorcontrib><creatorcontrib>De Franco, A.</creatorcontrib><creatorcontrib>Deiml, P.</creatorcontrib><creatorcontrib>Fasola, G.</creatorcontrib><creatorcontrib>Funk, S.</creatorcontrib><creatorcontrib>Gebyehu, M.</creatorcontrib><creatorcontrib>Gironnet, J.</creatorcontrib><creatorcontrib>Graham, J.A.</creatorcontrib><creatorcontrib>Greenshaw, T.</creatorcontrib><creatorcontrib>Hinton, J.A.</creatorcontrib><creatorcontrib>Kraus, M.</creatorcontrib><creatorcontrib>Lapington, J.S.</creatorcontrib><creatorcontrib>Laporte, P.</creatorcontrib><creatorcontrib>Leach, S.A.</creatorcontrib><creatorcontrib>Le Blanc, O.</creatorcontrib><creatorcontrib>Malouf, A.</creatorcontrib><creatorcontrib>Molyneux, P.</creatorcontrib><creatorcontrib>Moore, P.</creatorcontrib><creatorcontrib>Prokoph, H.</creatorcontrib><creatorcontrib>Okumura, A.</creatorcontrib><creatorcontrib>Ross, D.</creatorcontrib><creatorcontrib>Rowell, G.</creatorcontrib><creatorcontrib>Sapozhnikov, L.</creatorcontrib><creatorcontrib>Schoorlemmer, H.</creatorcontrib><creatorcontrib>Sol, H.</creatorcontrib><creatorcontrib>Stephan, M.</creatorcontrib><creatorcontrib>Tajima, H.</creatorcontrib><creatorcontrib>Tibaldo, L.</creatorcontrib><creatorcontrib>Varner, G.</creatorcontrib><creatorcontrib>Zink, A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zorn, J.</au><au>White, R.</au><au>Watson, J.J.</au><au>Armstrong, T.P.</au><au>Balzer, A.</au><au>Barcelo, M.</au><au>Berge, D.</au><au>Bose, R.</au><au>Brown, A.M.</au><au>Bryan, M.</au><au>Chadwick, P.M.</au><au>Clark, P.</au><au>Costantini, H.</au><au>Cotter, G.</au><au>Dangeon, L.</au><au>Daniel, M.</au><au>De Franco, A.</au><au>Deiml, P.</au><au>Fasola, G.</au><au>Funk, S.</au><au>Gebyehu, M.</au><au>Gironnet, J.</au><au>Graham, J.A.</au><au>Greenshaw, T.</au><au>Hinton, J.A.</au><au>Kraus, M.</au><au>Lapington, J.S.</au><au>Laporte, P.</au><au>Leach, S.A.</au><au>Le Blanc, O.</au><au>Malouf, A.</au><au>Molyneux, P.</au><au>Moore, P.</au><au>Prokoph, H.</au><au>Okumura, A.</au><au>Ross, D.</au><au>Rowell, G.</au><au>Sapozhnikov, L.</au><au>Schoorlemmer, H.</au><au>Sol, H.</au><au>Stephan, M.</au><au>Tajima, H.</au><au>Tibaldo, L.</au><au>Varner, G.</au><au>Zink, A.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Univ. of Hawaii, Honolulu, HI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>904</volume><issue>C</issue><spage>44</spage><epage>63</epage><pages>44-63</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 × 6 mm2 pixels, leading to a low-cost (∼150 k€), compact (0.5 m × 0.5 m), and light (∼45 kg) camera with 2048 pixels providing a camera FoV of ∼9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the γ-ray energy range of 1–300 TeV, and at impact distances up to ∼500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∼900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2018.06.078</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2918-1824</orcidid><orcidid>https://orcid.org/0000-0002-9975-1829</orcidid><orcidid>https://orcid.org/0000-0002-9516-1581</orcidid><orcidid>https://orcid.org/0000-0001-9309-0700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2018-10, Vol.904 (C), p.44-63 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_osti_scitechconnect_1490682 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cherenkov telescope array Full-waveform readout Gamma-rays Imaging atmospheric Cherenkov telescopes Instrumentation and Detectors INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Physics |
title | Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20and%20testing%20of%20CHEC-M%E2%80%94A%20camera%20prototype%20for%20the%20small-sized%20telescopes%20of%20the%20Cherenkov%20telescope%20array&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Zorn,%20J.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-10-01&rft.volume=904&rft.issue=C&rft.spage=44&rft.epage=63&rft.pages=44-63&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2018.06.078&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_01846808v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900218308143&rfr_iscdi=true |