Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas

Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-01, Vol.122 (1), p.015101-015101, Article 015101
Hauptverfasser: Jara-Almonte, J, Ji, H, Yoo, J, Yamada, M, Fox, W, Daughton, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 015101
container_issue 1
container_start_page 015101
container_title Physical review letters
container_volume 122
creator Jara-Almonte, J
Ji, H
Yoo, J
Yamada, M
Fox, W
Daughton, W
description Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results.
doi_str_mv 10.1103/PhysRevLett.122.015101
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1490229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213147647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</originalsourceid><addsrcrecordid>eNpdkVFP3DAMgCPENG6wv4AqeOGlh-20TfuIELDTDu10bM9RLk0gqG2gSZFuv56eeqBpT7bsz5atj7FThDki8MvV0zaszdvSxDhHojlgjoAHbIYgqlQgZodsBsAxrQDEEfsWwjMAIBXlV3bEcZfl5YwtfrrORKeTB9cOjYrOdyHxNrlXj1N9bbTvOqN3ncR1yUr10amm2SYL37m_pk5WjQqtCifsi1VNMN_38Zj9ub35ff0jXf66W1xfLVOdFSKmm4rnQqi8rnIuLAlFilNda1K6JkHlJgdbVGjHLzUQtxsLtqbS5FkJoiw0P2Zn014fopNBu2j00_5GiVkFRNUIXUzQS-9fBxOibF3QpmlUZ_wQJBFyzESRiRE9_w999kPfjS9IQkFFlhe4o4qJ0r0PoTdWvvSuVf1WIsidEfmPETkakZORcfB0v37YtKb-HPtQwN8B332IUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172645617</pqid></control><display><type>article</type><title>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jara-Almonte, J ; Ji, H ; Yoo, J ; Yamada, M ; Fox, W ; Daughton, W</creator><creatorcontrib>Jara-Almonte, J ; Ji, H ; Yoo, J ; Yamada, M ; Fox, W ; Daughton, W ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.015101</identifier><identifier>PMID: 31012658</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Chromosphere ; Computer simulation ; Inflow ; Interstellar matter ; Ionization ; Particle in cell technique ; Plasma ; Plasmas ; Simulation</subject><ispartof>Physical review letters, 2019-01, Vol.122 (1), p.015101-015101, Article 015101</ispartof><rights>Copyright American Physical Society Jan 11, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</citedby><cites>FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31012658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1490229$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jara-Almonte, J</creatorcontrib><creatorcontrib>Ji, H</creatorcontrib><creatorcontrib>Yoo, J</creatorcontrib><creatorcontrib>Yamada, M</creatorcontrib><creatorcontrib>Fox, W</creatorcontrib><creatorcontrib>Daughton, W</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Chromosphere</subject><subject>Computer simulation</subject><subject>Inflow</subject><subject>Interstellar matter</subject><subject>Ionization</subject><subject>Particle in cell technique</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>Simulation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkVFP3DAMgCPENG6wv4AqeOGlh-20TfuIELDTDu10bM9RLk0gqG2gSZFuv56eeqBpT7bsz5atj7FThDki8MvV0zaszdvSxDhHojlgjoAHbIYgqlQgZodsBsAxrQDEEfsWwjMAIBXlV3bEcZfl5YwtfrrORKeTB9cOjYrOdyHxNrlXj1N9bbTvOqN3ncR1yUr10amm2SYL37m_pk5WjQqtCifsi1VNMN_38Zj9ub35ff0jXf66W1xfLVOdFSKmm4rnQqi8rnIuLAlFilNda1K6JkHlJgdbVGjHLzUQtxsLtqbS5FkJoiw0P2Zn014fopNBu2j00_5GiVkFRNUIXUzQS-9fBxOibF3QpmlUZ_wQJBFyzESRiRE9_w999kPfjS9IQkFFlhe4o4qJ0r0PoTdWvvSuVf1WIsidEfmPETkakZORcfB0v37YtKb-HPtQwN8B332IUg</recordid><startdate>20190111</startdate><enddate>20190111</enddate><creator>Jara-Almonte, J</creator><creator>Ji, H</creator><creator>Yoo, J</creator><creator>Yamada, M</creator><creator>Fox, W</creator><creator>Daughton, W</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190111</creationdate><title>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</title><author>Jara-Almonte, J ; Ji, H ; Yoo, J ; Yamada, M ; Fox, W ; Daughton, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Chromosphere</topic><topic>Computer simulation</topic><topic>Inflow</topic><topic>Interstellar matter</topic><topic>Ionization</topic><topic>Particle in cell technique</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jara-Almonte, J</creatorcontrib><creatorcontrib>Ji, H</creatorcontrib><creatorcontrib>Yoo, J</creatorcontrib><creatorcontrib>Yamada, M</creatorcontrib><creatorcontrib>Fox, W</creatorcontrib><creatorcontrib>Daughton, W</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jara-Almonte, J</au><au>Ji, H</au><au>Yoo, J</au><au>Yamada, M</au><au>Fox, W</au><au>Daughton, W</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-01-11</date><risdate>2019</risdate><volume>122</volume><issue>1</issue><spage>015101</spage><epage>015101</epage><pages>015101-015101</pages><artnum>015101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31012658</pmid><doi>10.1103/PhysRevLett.122.015101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-01, Vol.122 (1), p.015101-015101, Article 015101
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1490229
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Chromosphere
Computer simulation
Inflow
Interstellar matter
Ionization
Particle in cell technique
Plasma
Plasmas
Simulation
title Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Simulations%20of%20Magnetic%20Reconnection%20in%20Partially%20Ionized%20Plasmas&rft.jtitle=Physical%20review%20letters&rft.au=Jara-Almonte,%20J&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2019-01-11&rft.volume=122&rft.issue=1&rft.spage=015101&rft.epage=015101&rft.pages=015101-015101&rft.artnum=015101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.015101&rft_dat=%3Cproquest_osti_%3E2213147647%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172645617&rft_id=info:pmid/31012658&rfr_iscdi=true