Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas
Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere,...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-01, Vol.122 (1), p.015101-015101, Article 015101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 015101 |
---|---|
container_issue | 1 |
container_start_page | 015101 |
container_title | Physical review letters |
container_volume | 122 |
creator | Jara-Almonte, J Ji, H Yoo, J Yamada, M Fox, W Daughton, W |
description | Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results. |
doi_str_mv | 10.1103/PhysRevLett.122.015101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1490229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213147647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</originalsourceid><addsrcrecordid>eNpdkVFP3DAMgCPENG6wv4AqeOGlh-20TfuIELDTDu10bM9RLk0gqG2gSZFuv56eeqBpT7bsz5atj7FThDki8MvV0zaszdvSxDhHojlgjoAHbIYgqlQgZodsBsAxrQDEEfsWwjMAIBXlV3bEcZfl5YwtfrrORKeTB9cOjYrOdyHxNrlXj1N9bbTvOqN3ncR1yUr10amm2SYL37m_pk5WjQqtCifsi1VNMN_38Zj9ub35ff0jXf66W1xfLVOdFSKmm4rnQqi8rnIuLAlFilNda1K6JkHlJgdbVGjHLzUQtxsLtqbS5FkJoiw0P2Zn014fopNBu2j00_5GiVkFRNUIXUzQS-9fBxOibF3QpmlUZ_wQJBFyzESRiRE9_w999kPfjS9IQkFFlhe4o4qJ0r0PoTdWvvSuVf1WIsidEfmPETkakZORcfB0v37YtKb-HPtQwN8B332IUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172645617</pqid></control><display><type>article</type><title>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jara-Almonte, J ; Ji, H ; Yoo, J ; Yamada, M ; Fox, W ; Daughton, W</creator><creatorcontrib>Jara-Almonte, J ; Ji, H ; Yoo, J ; Yamada, M ; Fox, W ; Daughton, W ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.015101</identifier><identifier>PMID: 31012658</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Chromosphere ; Computer simulation ; Inflow ; Interstellar matter ; Ionization ; Particle in cell technique ; Plasma ; Plasmas ; Simulation</subject><ispartof>Physical review letters, 2019-01, Vol.122 (1), p.015101-015101, Article 015101</ispartof><rights>Copyright American Physical Society Jan 11, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</citedby><cites>FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31012658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1490229$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jara-Almonte, J</creatorcontrib><creatorcontrib>Ji, H</creatorcontrib><creatorcontrib>Yoo, J</creatorcontrib><creatorcontrib>Yamada, M</creatorcontrib><creatorcontrib>Fox, W</creatorcontrib><creatorcontrib>Daughton, W</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Chromosphere</subject><subject>Computer simulation</subject><subject>Inflow</subject><subject>Interstellar matter</subject><subject>Ionization</subject><subject>Particle in cell technique</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>Simulation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkVFP3DAMgCPENG6wv4AqeOGlh-20TfuIELDTDu10bM9RLk0gqG2gSZFuv56eeqBpT7bsz5atj7FThDki8MvV0zaszdvSxDhHojlgjoAHbIYgqlQgZodsBsAxrQDEEfsWwjMAIBXlV3bEcZfl5YwtfrrORKeTB9cOjYrOdyHxNrlXj1N9bbTvOqN3ncR1yUr10amm2SYL37m_pk5WjQqtCifsi1VNMN_38Zj9ub35ff0jXf66W1xfLVOdFSKmm4rnQqi8rnIuLAlFilNda1K6JkHlJgdbVGjHLzUQtxsLtqbS5FkJoiw0P2Zn014fopNBu2j00_5GiVkFRNUIXUzQS-9fBxOibF3QpmlUZ_wQJBFyzESRiRE9_w999kPfjS9IQkFFlhe4o4qJ0r0PoTdWvvSuVf1WIsidEfmPETkakZORcfB0v37YtKb-HPtQwN8B332IUg</recordid><startdate>20190111</startdate><enddate>20190111</enddate><creator>Jara-Almonte, J</creator><creator>Ji, H</creator><creator>Yoo, J</creator><creator>Yamada, M</creator><creator>Fox, W</creator><creator>Daughton, W</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190111</creationdate><title>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</title><author>Jara-Almonte, J ; Ji, H ; Yoo, J ; Yamada, M ; Fox, W ; Daughton, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-b93577a5d9537f27a2a32ddc2acd2728b50f691f110c023fbf0fd28e5480786c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Chromosphere</topic><topic>Computer simulation</topic><topic>Inflow</topic><topic>Interstellar matter</topic><topic>Ionization</topic><topic>Particle in cell technique</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jara-Almonte, J</creatorcontrib><creatorcontrib>Ji, H</creatorcontrib><creatorcontrib>Yoo, J</creatorcontrib><creatorcontrib>Yamada, M</creatorcontrib><creatorcontrib>Fox, W</creatorcontrib><creatorcontrib>Daughton, W</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jara-Almonte, J</au><au>Ji, H</au><au>Yoo, J</au><au>Yamada, M</au><au>Fox, W</au><au>Daughton, W</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-01-11</date><risdate>2019</risdate><volume>122</volume><issue>1</issue><spage>015101</spage><epage>015101</epage><pages>015101-015101</pages><artnum>015101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems. In the simulations, the transition to fast reconnection occurs when the current sheet width thins below the ion-inertial length in contrast to previous analytic predictions. The peak reconnection rate is ≥0.08 when normalized to the bulk Alfvén speed (including both ion and neutral mass), consistent with previous experimental results. However, when the bulk Alfvén speed falls below the neutral sound speed, the rate becomes system size dependent. The normalized inflow velocity is ionization fraction dependent, which is shown to be a result of neutral momentum transport. A model for the inflow is developed which agrees well with the simulation results.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31012658</pmid><doi>10.1103/PhysRevLett.122.015101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-01, Vol.122 (1), p.015101-015101, Article 015101 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1490229 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Chromosphere Computer simulation Inflow Interstellar matter Ionization Particle in cell technique Plasma Plasmas Simulation |
title | Kinetic Simulations of Magnetic Reconnection in Partially Ionized Plasmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Simulations%20of%20Magnetic%20Reconnection%20in%20Partially%20Ionized%20Plasmas&rft.jtitle=Physical%20review%20letters&rft.au=Jara-Almonte,%20J&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2019-01-11&rft.volume=122&rft.issue=1&rft.spage=015101&rft.epage=015101&rft.pages=015101-015101&rft.artnum=015101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.015101&rft_dat=%3Cproquest_osti_%3E2213147647%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172645617&rft_id=info:pmid/31012658&rfr_iscdi=true |