Learning new physics from a machine
We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as unbiased function approximants make them particularly suited for this task. An algorithm tha...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2019-01, Vol.99 (1), p.015014, Article 015014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 015014 |
container_title | Physical review. D |
container_volume | 99 |
creator | D’Agnolo, Raffaele Tito Wulzer, Andrea |
description | We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as unbiased function approximants make them particularly suited for this task. An algorithm that implements this idea is constructed, as a straightforward application of the likelihood-ratio hypothesis test. The algorithm compares observations with an auxiliary set of reference-distributed events, possibly obtained with a Monte Carlo event generator. It returns a p value, which measures the compatibility of the reference model with the data. It also identifies the most discrepant phase-space region of the data set, to be selected for further investigation. The most interesting potential applications are model-independent new physics searches, although our approach could also be used to compare the theoretical predictions of different Monte Carlo event generators, or for data validation algorithms. In this work we study the performance of our algorithm on a few simple examples. The results confirm the model independence of the approach, namely that it displays good sensitivity to a variety of putative signals. Furthermore, we show that the reach does not depend much on whether a favorable signal region is selected based on prior expectations. We identify directions for improvement towards applications to real experimental data sets. |
doi_str_mv | 10.1103/PhysRevD.99.015014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1489853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2181757367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-c4e42b7fdc9307f72ebb5dd1cac5c264f361ceb13cf49fa7e21decd30ca4c1bb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpD7CK6IpFi8d24npZlUeRKoEQrC1nMiap2qTYaVH_nqBAN3Pv4uhIcxm7Bj4F4PLutTzGNzrcT42Zckg5qDM2EErzCefCnJ868Es2inHNu5pxowEGbLwiF-qq_kxq-k52nanCmPjQbBOXbB2WVU1X7MK7TaTRXw7Zx-PD-2I5Wb08PS_mqwkqyNrukhK59gUaybXXgvI8LQpAhymKTHmZAVIOEr0y3mkSUBAWkqNTCHkuh-ym9zaxrWzEqiUssalrwtaCmplZKjvotodKt7G7UG1dONrGVXY5X1kkZ7kSSmjDD9Cx457dheZrT7G162Yf6u4HK2AGOtUy0x0legpDE2Mgf9ICt78D2_-BrTG2H1j-AIP2bcU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181757367</pqid></control><display><type>article</type><title>Learning new physics from a machine</title><source>American Physical Society Journals</source><creator>D’Agnolo, Raffaele Tito ; Wulzer, Andrea</creator><creatorcontrib>D’Agnolo, Raffaele Tito ; Wulzer, Andrea ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as unbiased function approximants make them particularly suited for this task. An algorithm that implements this idea is constructed, as a straightforward application of the likelihood-ratio hypothesis test. The algorithm compares observations with an auxiliary set of reference-distributed events, possibly obtained with a Monte Carlo event generator. It returns a p value, which measures the compatibility of the reference model with the data. It also identifies the most discrepant phase-space region of the data set, to be selected for further investigation. The most interesting potential applications are model-independent new physics searches, although our approach could also be used to compare the theoretical predictions of different Monte Carlo event generators, or for data validation algorithms. In this work we study the performance of our algorithm on a few simple examples. The results confirm the model independence of the approach, namely that it displays good sensitivity to a variety of putative signals. Furthermore, we show that the reach does not depend much on whether a favorable signal region is selected based on prior expectations. We identify directions for improvement towards applications to real experimental data sets.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.99.015014</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Approximants ; Computer simulation ; High Energy Physics - Phenomenology ; Neural networks ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physical review. D, 2019-01, Vol.99 (1), p.015014, Article 015014</ispartof><rights>Copyright American Physical Society Jan 1, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-c4e42b7fdc9307f72ebb5dd1cac5c264f361ceb13cf49fa7e21decd30ca4c1bb3</citedby><cites>FETCH-LOGICAL-c416t-c4e42b7fdc9307f72ebb5dd1cac5c264f361ceb13cf49fa7e21decd30ca4c1bb3</cites><orcidid>0000-0002-8271-6840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2875,2876,27923,27924</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04242790$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1489853$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Agnolo, Raffaele Tito</creatorcontrib><creatorcontrib>Wulzer, Andrea</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Learning new physics from a machine</title><title>Physical review. D</title><description>We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as unbiased function approximants make them particularly suited for this task. An algorithm that implements this idea is constructed, as a straightforward application of the likelihood-ratio hypothesis test. The algorithm compares observations with an auxiliary set of reference-distributed events, possibly obtained with a Monte Carlo event generator. It returns a p value, which measures the compatibility of the reference model with the data. It also identifies the most discrepant phase-space region of the data set, to be selected for further investigation. The most interesting potential applications are model-independent new physics searches, although our approach could also be used to compare the theoretical predictions of different Monte Carlo event generators, or for data validation algorithms. In this work we study the performance of our algorithm on a few simple examples. The results confirm the model independence of the approach, namely that it displays good sensitivity to a variety of putative signals. Furthermore, we show that the reach does not depend much on whether a favorable signal region is selected based on prior expectations. We identify directions for improvement towards applications to real experimental data sets.</description><subject>Algorithms</subject><subject>Approximants</subject><subject>Computer simulation</subject><subject>High Energy Physics - Phenomenology</subject><subject>Neural networks</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EElXpD7CK6IpFi8d24npZlUeRKoEQrC1nMiap2qTYaVH_nqBAN3Pv4uhIcxm7Bj4F4PLutTzGNzrcT42Zckg5qDM2EErzCefCnJ868Es2inHNu5pxowEGbLwiF-qq_kxq-k52nanCmPjQbBOXbB2WVU1X7MK7TaTRXw7Zx-PD-2I5Wb08PS_mqwkqyNrukhK59gUaybXXgvI8LQpAhymKTHmZAVIOEr0y3mkSUBAWkqNTCHkuh-ym9zaxrWzEqiUssalrwtaCmplZKjvotodKt7G7UG1dONrGVXY5X1kkZ7kSSmjDD9Cx457dheZrT7G162Yf6u4HK2AGOtUy0x0legpDE2Mgf9ICt78D2_-BrTG2H1j-AIP2bcU</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>D’Agnolo, Raffaele Tito</creator><creator>Wulzer, Andrea</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8271-6840</orcidid></search><sort><creationdate>20190101</creationdate><title>Learning new physics from a machine</title><author>D’Agnolo, Raffaele Tito ; Wulzer, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-c4e42b7fdc9307f72ebb5dd1cac5c264f361ceb13cf49fa7e21decd30ca4c1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximants</topic><topic>Computer simulation</topic><topic>High Energy Physics - Phenomenology</topic><topic>Neural networks</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Agnolo, Raffaele Tito</creatorcontrib><creatorcontrib>Wulzer, Andrea</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Agnolo, Raffaele Tito</au><au>Wulzer, Andrea</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning new physics from a machine</atitle><jtitle>Physical review. D</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>99</volume><issue>1</issue><spage>015014</spage><pages>015014-</pages><artnum>015014</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as unbiased function approximants make them particularly suited for this task. An algorithm that implements this idea is constructed, as a straightforward application of the likelihood-ratio hypothesis test. The algorithm compares observations with an auxiliary set of reference-distributed events, possibly obtained with a Monte Carlo event generator. It returns a p value, which measures the compatibility of the reference model with the data. It also identifies the most discrepant phase-space region of the data set, to be selected for further investigation. The most interesting potential applications are model-independent new physics searches, although our approach could also be used to compare the theoretical predictions of different Monte Carlo event generators, or for data validation algorithms. In this work we study the performance of our algorithm on a few simple examples. The results confirm the model independence of the approach, namely that it displays good sensitivity to a variety of putative signals. Furthermore, we show that the reach does not depend much on whether a favorable signal region is selected based on prior expectations. We identify directions for improvement towards applications to real experimental data sets.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.99.015014</doi><orcidid>https://orcid.org/0000-0002-8271-6840</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2019-01, Vol.99 (1), p.015014, Article 015014 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1489853 |
source | American Physical Society Journals |
subjects | Algorithms Approximants Computer simulation High Energy Physics - Phenomenology Neural networks Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
title | Learning new physics from a machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20new%20physics%20from%20a%20machine&rft.jtitle=Physical%20review.%20D&rft.au=D%E2%80%99Agnolo,%20Raffaele%20Tito&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-01-01&rft.volume=99&rft.issue=1&rft.spage=015014&rft.pages=015014-&rft.artnum=015014&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.99.015014&rft_dat=%3Cproquest_osti_%3E2181757367%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181757367&rft_id=info:pmid/&rfr_iscdi=true |