DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents

Particle assembly at interfaces via programmed DNA interactions allows for independent modification of both nanoparticle–surface interaction strength and the magnitude of interparticle repulsion. Together, these factors allow for modification of the deposited thin film morphology via alterations in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2018-12, Vol.34 (49), p.14842-14850
Hauptverfasser: Lewis, Diana J, Gabrys, Paul A, Macfarlane, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14850
container_issue 49
container_start_page 14842
container_title Langmuir
container_volume 34
creator Lewis, Diana J
Gabrys, Paul A
Macfarlane, Robert J
description Particle assembly at interfaces via programmed DNA interactions allows for independent modification of both nanoparticle–surface interaction strength and the magnitude of interparticle repulsion. Together, these factors allow for modification of the deposited thin film morphology via alterations in DNA binding sequence. Importantly, both Langmuir and random sequential adsorption models yield insights into the thermodynamics of deposition but cannot fully explain particle coverage as a function of all relevant variables, indicating that the particle deposition mechanism for DNA-grafted colloids is more complex than prior adsorption phenomena. Here, it is shown that these deviations from standard behavior arise from the fact that each nanoparticle is attached to the surface via multiple weak DNA duplex interactions, enabling diffusion of adsorbed colloids across the substrate. Thus, surface migration of individual particles causes reorganization of the deposited monolayer, leading to the unusual behavior of coverage increasing at elevated temperatures that are just below the particle desorption temperature. The programmability of DNA-directed particle deposition therefore allows for precise control over the morphology of monolayer films, as well as the ability to generate crystalline materials with controllable surface roughness and grain size through layer-by-layer growth. The increased control over thin film morphology potentially enables tailoring of mechanical and optical properties and holds promise for use in a variety of applications.
doi_str_mv 10.1021/acs.langmuir.8b01541
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1488938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098768535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-fd9cd089b9d24072ae964dba3276c2452575817cafb39d6e144c6b2e40f7db1e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAYRS0EoqXwBghFTCwp_o3tsWrLj1QVBpgtx3GKqyRu7QSJtydVU0ambzn33k8HgFsEpwhi9KhNnFa62dSdC1ORQ8QoOgNjxDBMmcD8HIwhpyTlNCMjcBXjFkIoCZWXYEQgyiSkaAyWi_UsXbhgTWuLZO2bdDV0Jgu789G1zjeJL5P34DdB17XOK5vMWl8ny33nvnVlmzZeg4tSV9HeDHcCPp-WH_OXdPX2_DqfrVJNmWjTspCmgELmssAUcqytzGiRa4J5ZjBlmHEmEDe6zIksMosoNVmOLYUlL3JkyQTcH3t9bJ2KxrXWfBnfNP37ClEhJBE99HCEdsHvOxtbVbtobNXLsr6LCkMpeCYYYT1Kj6gJPsZgS7ULrtbhRyGoDpZVb1mdLKvBch-7Gxa6vLbFX-iktQfgETjEt74LTW_l_85fK1SLZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098768535</pqid></control><display><type>article</type><title>DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents</title><source>American Chemical Society</source><creator>Lewis, Diana J ; Gabrys, Paul A ; Macfarlane, Robert J</creator><creatorcontrib>Lewis, Diana J ; Gabrys, Paul A ; Macfarlane, Robert J ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Particle assembly at interfaces via programmed DNA interactions allows for independent modification of both nanoparticle–surface interaction strength and the magnitude of interparticle repulsion. Together, these factors allow for modification of the deposited thin film morphology via alterations in DNA binding sequence. Importantly, both Langmuir and random sequential adsorption models yield insights into the thermodynamics of deposition but cannot fully explain particle coverage as a function of all relevant variables, indicating that the particle deposition mechanism for DNA-grafted colloids is more complex than prior adsorption phenomena. Here, it is shown that these deviations from standard behavior arise from the fact that each nanoparticle is attached to the surface via multiple weak DNA duplex interactions, enabling diffusion of adsorbed colloids across the substrate. Thus, surface migration of individual particles causes reorganization of the deposited monolayer, leading to the unusual behavior of coverage increasing at elevated temperatures that are just below the particle desorption temperature. The programmability of DNA-directed particle deposition therefore allows for precise control over the morphology of monolayer films, as well as the ability to generate crystalline materials with controllable surface roughness and grain size through layer-by-layer growth. The increased control over thin film morphology potentially enables tailoring of mechanical and optical properties and holds promise for use in a variety of applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.8b01541</identifier><identifier>PMID: 30169041</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adsorption ; BASIC BIOLOGICAL SCIENCES ; deposition ; DNA ; genetics ; Langmuir ; nanoparticles ; random sequential adsorption ; self-assembly ; thin films</subject><ispartof>Langmuir, 2018-12, Vol.34 (49), p.14842-14850</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-fd9cd089b9d24072ae964dba3276c2452575817cafb39d6e144c6b2e40f7db1e3</citedby><cites>FETCH-LOGICAL-a458t-fd9cd089b9d24072ae964dba3276c2452575817cafb39d6e144c6b2e40f7db1e3</cites><orcidid>0000-0001-9449-2680 ; 0000-0002-1268-4492 ; 0000-0002-7376-4162 ; 0000000273764162 ; 0000000194492680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.8b01541$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.8b01541$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30169041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1488938$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Diana J</creatorcontrib><creatorcontrib>Gabrys, Paul A</creatorcontrib><creatorcontrib>Macfarlane, Robert J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Particle assembly at interfaces via programmed DNA interactions allows for independent modification of both nanoparticle–surface interaction strength and the magnitude of interparticle repulsion. Together, these factors allow for modification of the deposited thin film morphology via alterations in DNA binding sequence. Importantly, both Langmuir and random sequential adsorption models yield insights into the thermodynamics of deposition but cannot fully explain particle coverage as a function of all relevant variables, indicating that the particle deposition mechanism for DNA-grafted colloids is more complex than prior adsorption phenomena. Here, it is shown that these deviations from standard behavior arise from the fact that each nanoparticle is attached to the surface via multiple weak DNA duplex interactions, enabling diffusion of adsorbed colloids across the substrate. Thus, surface migration of individual particles causes reorganization of the deposited monolayer, leading to the unusual behavior of coverage increasing at elevated temperatures that are just below the particle desorption temperature. The programmability of DNA-directed particle deposition therefore allows for precise control over the morphology of monolayer films, as well as the ability to generate crystalline materials with controllable surface roughness and grain size through layer-by-layer growth. The increased control over thin film morphology potentially enables tailoring of mechanical and optical properties and holds promise for use in a variety of applications.</description><subject>adsorption</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>deposition</subject><subject>DNA</subject><subject>genetics</subject><subject>Langmuir</subject><subject>nanoparticles</subject><subject>random sequential adsorption</subject><subject>self-assembly</subject><subject>thin films</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAYRS0EoqXwBghFTCwp_o3tsWrLj1QVBpgtx3GKqyRu7QSJtydVU0ambzn33k8HgFsEpwhi9KhNnFa62dSdC1ORQ8QoOgNjxDBMmcD8HIwhpyTlNCMjcBXjFkIoCZWXYEQgyiSkaAyWi_UsXbhgTWuLZO2bdDV0Jgu789G1zjeJL5P34DdB17XOK5vMWl8ny33nvnVlmzZeg4tSV9HeDHcCPp-WH_OXdPX2_DqfrVJNmWjTspCmgELmssAUcqytzGiRa4J5ZjBlmHEmEDe6zIksMosoNVmOLYUlL3JkyQTcH3t9bJ2KxrXWfBnfNP37ClEhJBE99HCEdsHvOxtbVbtobNXLsr6LCkMpeCYYYT1Kj6gJPsZgS7ULrtbhRyGoDpZVb1mdLKvBch-7Gxa6vLbFX-iktQfgETjEt74LTW_l_85fK1SLZw</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Lewis, Diana J</creator><creator>Gabrys, Paul A</creator><creator>Macfarlane, Robert J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9449-2680</orcidid><orcidid>https://orcid.org/0000-0002-1268-4492</orcidid><orcidid>https://orcid.org/0000-0002-7376-4162</orcidid><orcidid>https://orcid.org/0000000273764162</orcidid><orcidid>https://orcid.org/0000000194492680</orcidid></search><sort><creationdate>20181211</creationdate><title>DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents</title><author>Lewis, Diana J ; Gabrys, Paul A ; Macfarlane, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-fd9cd089b9d24072ae964dba3276c2452575817cafb39d6e144c6b2e40f7db1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adsorption</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>deposition</topic><topic>DNA</topic><topic>genetics</topic><topic>Langmuir</topic><topic>nanoparticles</topic><topic>random sequential adsorption</topic><topic>self-assembly</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Diana J</creatorcontrib><creatorcontrib>Gabrys, Paul A</creatorcontrib><creatorcontrib>Macfarlane, Robert J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Diana J</au><au>Gabrys, Paul A</au><au>Macfarlane, Robert J</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>34</volume><issue>49</issue><spage>14842</spage><epage>14850</epage><pages>14842-14850</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Particle assembly at interfaces via programmed DNA interactions allows for independent modification of both nanoparticle–surface interaction strength and the magnitude of interparticle repulsion. Together, these factors allow for modification of the deposited thin film morphology via alterations in DNA binding sequence. Importantly, both Langmuir and random sequential adsorption models yield insights into the thermodynamics of deposition but cannot fully explain particle coverage as a function of all relevant variables, indicating that the particle deposition mechanism for DNA-grafted colloids is more complex than prior adsorption phenomena. Here, it is shown that these deviations from standard behavior arise from the fact that each nanoparticle is attached to the surface via multiple weak DNA duplex interactions, enabling diffusion of adsorbed colloids across the substrate. Thus, surface migration of individual particles causes reorganization of the deposited monolayer, leading to the unusual behavior of coverage increasing at elevated temperatures that are just below the particle desorption temperature. The programmability of DNA-directed particle deposition therefore allows for precise control over the morphology of monolayer films, as well as the ability to generate crystalline materials with controllable surface roughness and grain size through layer-by-layer growth. The increased control over thin film morphology potentially enables tailoring of mechanical and optical properties and holds promise for use in a variety of applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30169041</pmid><doi>10.1021/acs.langmuir.8b01541</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9449-2680</orcidid><orcidid>https://orcid.org/0000-0002-1268-4492</orcidid><orcidid>https://orcid.org/0000-0002-7376-4162</orcidid><orcidid>https://orcid.org/0000000273764162</orcidid><orcidid>https://orcid.org/0000000194492680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2018-12, Vol.34 (49), p.14842-14850
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_1488938
source American Chemical Society
subjects adsorption
BASIC BIOLOGICAL SCIENCES
deposition
DNA
genetics
Langmuir
nanoparticles
random sequential adsorption
self-assembly
thin films
title DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA-Directed%20Non-Langmuir%20Deposition%20of%20Programmable%20Atom%20Equivalents&rft.jtitle=Langmuir&rft.au=Lewis,%20Diana%20J&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-12-11&rft.volume=34&rft.issue=49&rft.spage=14842&rft.epage=14850&rft.pages=14842-14850&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.8b01541&rft_dat=%3Cproquest_osti_%3E2098768535%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098768535&rft_id=info:pmid/30169041&rfr_iscdi=true