Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy

The plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Chemistry 2018-11, Vol.2 (11), p.382-389
Hauptverfasser: Petridis, Loukas, Smith, Jeremy C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 11
container_start_page 382
container_title Nature reviews. Chemistry
container_volume 2
creator Petridis, Loukas
Smith, Jeremy C.
description The plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components. This Perspective describes the physical molecular driving forces that stabilize native lignocellulosic plant biomass structures and govern thermochemical biomass pretreatments. Understanding these driving forces can help us to design efficient methods for deconstructing biomass into biofuels and other bioproducts.
doi_str_mv 10.1038/s41570-018-0050-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1488718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389700531</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-55561836e6e45ef029480a40d1df8f4aa372731a77ce534b5bd58685873a6fbf3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouKz7A7wVPUeTJmnSoyx-geJFvYY0na5ZYrIm7YL_3iwV9DQvzDMvw4PQOSVXlDB1nTkVkmBCFSZEENwcoUXNWokZE-r4Xz5Fq5y3hBDaMt7KdoHen6MHO3mTsIc9-KpPbu_CphpispArFyrvNiFa8H7yMTtbdS5-mpyrHmwMeUyTHV0Mh4PDCgKkzfcZOhmMz7D6nUv0dnf7un7ATy_3j-ubJxypYiMWQjQlNNAAFzCQuuWKGE562g9q4MYwWUtGjZQWBOOd6HqhGiWUZKYZuoEt0cXcG_PodLZuBPtR3gpgR025UrLUL9HlDO1S_Jogj3obpxTKX7pmqpXFGaOFqmcq71IRAOmPokQfPOvZsy6e9cGzbtgPqelwfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389700531</pqid></control><display><type>article</type><title>Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy</title><source>Springer Online Journals Complete</source><creator>Petridis, Loukas ; Smith, Jeremy C.</creator><creatorcontrib>Petridis, Loukas ; Smith, Jeremy C. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>The plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components. This Perspective describes the physical molecular driving forces that stabilize native lignocellulosic plant biomass structures and govern thermochemical biomass pretreatments. Understanding these driving forces can help us to design efficient methods for deconstructing biomass into biofuels and other bioproducts.</description><identifier>ISSN: 2397-3358</identifier><identifier>EISSN: 2397-3358</identifier><identifier>DOI: 10.1038/s41570-018-0050-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>09 BIOMASS FUELS ; 639/638/224/909/4053 ; 639/638/440/951 ; 639/638/563/981 ; Analytical Chemistry ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biodiesel fuels ; Biomass ; Biopolymers ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Deconstruction ; Fractionation ; Fuels ; Inorganic Chemistry ; Lignocellulose ; Organic Chemistry ; Perspective ; Physical Chemistry ; Solubilization ; Solvation</subject><ispartof>Nature reviews. Chemistry, 2018-11, Vol.2 (11), p.382-389</ispartof><rights>Springer Nature Limited 2018</rights><rights>Springer Nature Limited 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-o183t-55561836e6e45ef029480a40d1df8f4aa372731a77ce534b5bd58685873a6fbf3</cites><orcidid>000000018569060X ; 0000000229783227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41570-018-0050-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41570-018-0050-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1488718$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Petridis, Loukas</creatorcontrib><creatorcontrib>Smith, Jeremy C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy</title><title>Nature reviews. Chemistry</title><addtitle>Nat Rev Chem</addtitle><description>The plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components. This Perspective describes the physical molecular driving forces that stabilize native lignocellulosic plant biomass structures and govern thermochemical biomass pretreatments. Understanding these driving forces can help us to design efficient methods for deconstructing biomass into biofuels and other bioproducts.</description><subject>09 BIOMASS FUELS</subject><subject>639/638/224/909/4053</subject><subject>639/638/440/951</subject><subject>639/638/563/981</subject><subject>Analytical Chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biodiesel fuels</subject><subject>Biomass</subject><subject>Biopolymers</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Deconstruction</subject><subject>Fractionation</subject><subject>Fuels</subject><subject>Inorganic Chemistry</subject><subject>Lignocellulose</subject><subject>Organic Chemistry</subject><subject>Perspective</subject><subject>Physical Chemistry</subject><subject>Solubilization</subject><subject>Solvation</subject><issn>2397-3358</issn><issn>2397-3358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1LxDAQhoMouKz7A7wVPUeTJmnSoyx-geJFvYY0na5ZYrIm7YL_3iwV9DQvzDMvw4PQOSVXlDB1nTkVkmBCFSZEENwcoUXNWokZE-r4Xz5Fq5y3hBDaMt7KdoHen6MHO3mTsIc9-KpPbu_CphpispArFyrvNiFa8H7yMTtbdS5-mpyrHmwMeUyTHV0Mh4PDCgKkzfcZOhmMz7D6nUv0dnf7un7ATy_3j-ubJxypYiMWQjQlNNAAFzCQuuWKGE562g9q4MYwWUtGjZQWBOOd6HqhGiWUZKYZuoEt0cXcG_PodLZuBPtR3gpgR025UrLUL9HlDO1S_Jogj3obpxTKX7pmqpXFGaOFqmcq71IRAOmPokQfPOvZsy6e9cGzbtgPqelwfA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Petridis, Loukas</creator><creator>Smith, Jeremy C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000018569060X</orcidid><orcidid>https://orcid.org/0000000229783227</orcidid></search><sort><creationdate>20181101</creationdate><title>Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy</title><author>Petridis, Loukas ; Smith, Jeremy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-55561836e6e45ef029480a40d1df8f4aa372731a77ce534b5bd58685873a6fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>09 BIOMASS FUELS</topic><topic>639/638/224/909/4053</topic><topic>639/638/440/951</topic><topic>639/638/563/981</topic><topic>Analytical Chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biodiesel fuels</topic><topic>Biomass</topic><topic>Biopolymers</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Deconstruction</topic><topic>Fractionation</topic><topic>Fuels</topic><topic>Inorganic Chemistry</topic><topic>Lignocellulose</topic><topic>Organic Chemistry</topic><topic>Perspective</topic><topic>Physical Chemistry</topic><topic>Solubilization</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petridis, Loukas</creatorcontrib><creatorcontrib>Smith, Jeremy C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature reviews. Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petridis, Loukas</au><au>Smith, Jeremy C.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy</atitle><jtitle>Nature reviews. Chemistry</jtitle><stitle>Nat Rev Chem</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>2</volume><issue>11</issue><spage>382</spage><epage>389</epage><pages>382-389</pages><issn>2397-3358</issn><eissn>2397-3358</eissn><abstract>The plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components. This Perspective describes the physical molecular driving forces that stabilize native lignocellulosic plant biomass structures and govern thermochemical biomass pretreatments. Understanding these driving forces can help us to design efficient methods for deconstructing biomass into biofuels and other bioproducts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41570-018-0050-6</doi><tpages>8</tpages><orcidid>https://orcid.org/000000018569060X</orcidid><orcidid>https://orcid.org/0000000229783227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-3358
ispartof Nature reviews. Chemistry, 2018-11, Vol.2 (11), p.382-389
issn 2397-3358
2397-3358
language eng
recordid cdi_osti_scitechconnect_1488718
source Springer Online Journals Complete
subjects 09 BIOMASS FUELS
639/638/224/909/4053
639/638/440/951
639/638/563/981
Analytical Chemistry
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biodiesel fuels
Biomass
Biopolymers
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Deconstruction
Fractionation
Fuels
Inorganic Chemistry
Lignocellulose
Organic Chemistry
Perspective
Physical Chemistry
Solubilization
Solvation
title Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-level%20driving%20forces%20in%20lignocellulosic%20biomass%20deconstruction%20for%20bioenergy&rft.jtitle=Nature%20reviews.%20Chemistry&rft.au=Petridis,%20Loukas&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2018-11-01&rft.volume=2&rft.issue=11&rft.spage=382&rft.epage=389&rft.pages=382-389&rft.issn=2397-3358&rft.eissn=2397-3358&rft_id=info:doi/10.1038/s41570-018-0050-6&rft_dat=%3Cproquest_osti_%3E2389700531%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389700531&rft_id=info:pmid/&rfr_iscdi=true