Photoresponse of Natural van der Waals Heterostructures
Van der Waals heterostructures consisting of two-dimensional materials offer a platform to obtain materials by design and are very attractive owing to unique electronic states. Research on 2D van der Waals heterostructures (vdWH) has so far been focused on fabricating individually stacked atomically...
Gespeichert in:
Veröffentlicht in: | ACS nano 2017-06, Vol.11 (6), p.6024-6030 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6030 |
---|---|
container_issue | 6 |
container_start_page | 6024 |
container_title | ACS nano |
container_volume | 11 |
creator | Ray, Kyle Yore, Alexander E Mou, Tong Jha, Sauraj Smithe, Kirby K. H Wang, Bin Pop, Eric Newaz, A. K. M |
description | Van der Waals heterostructures consisting of two-dimensional materials offer a platform to obtain materials by design and are very attractive owing to unique electronic states. Research on 2D van der Waals heterostructures (vdWH) has so far been focused on fabricating individually stacked atomically thin unary or binary crystals. Such systems include graphene, hexagonal boron nitride, and members of the transition metal dichalcogenide family. Here we present our experimental study of the optoelectronic properties of a naturally occurring vdWH, known as franckeite, which is a complex layered crystal composed of lead, tin, antimony, iron, and sulfur. We present here that thin film franckeite (60 nm < d < 100 nm) behaves as a narrow band gap semiconductor demonstrating a wide-band photoresponse. We have observed the band-edge transition at ∼1500 nm (∼830 meV) and high external quantum efficiency (EQE ≈ 3%) at room temperature. Laser-power-resolved and temperature-resolved photocurrent measurements reveal that the photocarrier generation and recombination are dominated by continuously distributed trap states within the band gap. To understand wavelength-resolved photocurrent, we also calculated the optical absorption properties via density functional theory. Finally, we have shown that the device has a fast photoresponse with a rise time as fast as ∼1 ms. Our study provides a fundamental understanding of the optoelectronic behavior in a complex naturally occurring vdWH, and may pave an avenue toward developing nanoscale optoelectronic devices with tailored properties. |
doi_str_mv | 10.1021/acsnano.7b01918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899403218</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-f25ed9fc6197bec19f4fde2b678ca6f6c32e4c0b3c9b0f18425b6fb707931b2b3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3qR4EmRb0qZNcpShThjqQdFbSNIvrKNrZtIK_nszWnfzlJA87_vxPQhdEjwjOCVzZUKjGjdjGhNB-BEaE5EVU8yLz-PDPScjdBbCBuOccVacolHKKc9FzseIva5d6zyEnWsCJM4mz6rtvKqTb9UkJfjkQ6k6JEtowbvQ-s7Ebwjn6MTGd7gYzgl6f7h_Wyynq5fHp8XdaqooJu3UpjmUwpqCCKbBEGGpLSHVBeNGFbYwWQrUYJ0ZobElnKa5LqxmmImM6FRnE3Td98bZlQymasGsjWsaMK0klDNKeYRuemjn3VcHoZXbKhioa9WA64IkXAiKs5Ts0XmPmrhN8GDlzldb5X8kwXKvVA5K5aA0Jq6G8k5voTzwfw4jcNsDMSk3rvNNFPJv3S8UZYH2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899403218</pqid></control><display><type>article</type><title>Photoresponse of Natural van der Waals Heterostructures</title><source>ACS Publications</source><creator>Ray, Kyle ; Yore, Alexander E ; Mou, Tong ; Jha, Sauraj ; Smithe, Kirby K. H ; Wang, Bin ; Pop, Eric ; Newaz, A. K. M</creator><creatorcontrib>Ray, Kyle ; Yore, Alexander E ; Mou, Tong ; Jha, Sauraj ; Smithe, Kirby K. H ; Wang, Bin ; Pop, Eric ; Newaz, A. K. M ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Van der Waals heterostructures consisting of two-dimensional materials offer a platform to obtain materials by design and are very attractive owing to unique electronic states. Research on 2D van der Waals heterostructures (vdWH) has so far been focused on fabricating individually stacked atomically thin unary or binary crystals. Such systems include graphene, hexagonal boron nitride, and members of the transition metal dichalcogenide family. Here we present our experimental study of the optoelectronic properties of a naturally occurring vdWH, known as franckeite, which is a complex layered crystal composed of lead, tin, antimony, iron, and sulfur. We present here that thin film franckeite (60 nm < d < 100 nm) behaves as a narrow band gap semiconductor demonstrating a wide-band photoresponse. We have observed the band-edge transition at ∼1500 nm (∼830 meV) and high external quantum efficiency (EQE ≈ 3%) at room temperature. Laser-power-resolved and temperature-resolved photocurrent measurements reveal that the photocarrier generation and recombination are dominated by continuously distributed trap states within the band gap. To understand wavelength-resolved photocurrent, we also calculated the optical absorption properties via density functional theory. Finally, we have shown that the device has a fast photoresponse with a rise time as fast as ∼1 ms. Our study provides a fundamental understanding of the optoelectronic behavior in a complex naturally occurring vdWH, and may pave an avenue toward developing nanoscale optoelectronic devices with tailored properties.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b01918</identifier><identifier>PMID: 28485958</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>density functional theory ; electronic transport ; franckeite ; MATERIALS SCIENCE ; photocurrent spectroscopy ; photodetectors ; van der Waals heterostructure</subject><ispartof>ACS nano, 2017-06, Vol.11 (6), p.6024-6030</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-f25ed9fc6197bec19f4fde2b678ca6f6c32e4c0b3c9b0f18425b6fb707931b2b3</citedby><cites>FETCH-LOGICAL-a401t-f25ed9fc6197bec19f4fde2b678ca6f6c32e4c0b3c9b0f18425b6fb707931b2b3</cites><orcidid>0000-0001-8159-1604 ; 0000-0001-8246-1422 ; 0000000182461422 ; 0000000181591604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b01918$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b01918$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28485958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487448$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, Kyle</creatorcontrib><creatorcontrib>Yore, Alexander E</creatorcontrib><creatorcontrib>Mou, Tong</creatorcontrib><creatorcontrib>Jha, Sauraj</creatorcontrib><creatorcontrib>Smithe, Kirby K. H</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><creatorcontrib>Newaz, A. K. M</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Photoresponse of Natural van der Waals Heterostructures</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Van der Waals heterostructures consisting of two-dimensional materials offer a platform to obtain materials by design and are very attractive owing to unique electronic states. Research on 2D van der Waals heterostructures (vdWH) has so far been focused on fabricating individually stacked atomically thin unary or binary crystals. Such systems include graphene, hexagonal boron nitride, and members of the transition metal dichalcogenide family. Here we present our experimental study of the optoelectronic properties of a naturally occurring vdWH, known as franckeite, which is a complex layered crystal composed of lead, tin, antimony, iron, and sulfur. We present here that thin film franckeite (60 nm < d < 100 nm) behaves as a narrow band gap semiconductor demonstrating a wide-band photoresponse. We have observed the band-edge transition at ∼1500 nm (∼830 meV) and high external quantum efficiency (EQE ≈ 3%) at room temperature. Laser-power-resolved and temperature-resolved photocurrent measurements reveal that the photocarrier generation and recombination are dominated by continuously distributed trap states within the band gap. To understand wavelength-resolved photocurrent, we also calculated the optical absorption properties via density functional theory. Finally, we have shown that the device has a fast photoresponse with a rise time as fast as ∼1 ms. Our study provides a fundamental understanding of the optoelectronic behavior in a complex naturally occurring vdWH, and may pave an avenue toward developing nanoscale optoelectronic devices with tailored properties.</description><subject>density functional theory</subject><subject>electronic transport</subject><subject>franckeite</subject><subject>MATERIALS SCIENCE</subject><subject>photocurrent spectroscopy</subject><subject>photodetectors</subject><subject>van der Waals heterostructure</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMobk7P3qR4EmRb0qZNcpShThjqQdFbSNIvrKNrZtIK_nszWnfzlJA87_vxPQhdEjwjOCVzZUKjGjdjGhNB-BEaE5EVU8yLz-PDPScjdBbCBuOccVacolHKKc9FzseIva5d6zyEnWsCJM4mz6rtvKqTb9UkJfjkQ6k6JEtowbvQ-s7Ebwjn6MTGd7gYzgl6f7h_Wyynq5fHp8XdaqooJu3UpjmUwpqCCKbBEGGpLSHVBeNGFbYwWQrUYJ0ZobElnKa5LqxmmImM6FRnE3Td98bZlQymasGsjWsaMK0klDNKeYRuemjn3VcHoZXbKhioa9WA64IkXAiKs5Ts0XmPmrhN8GDlzldb5X8kwXKvVA5K5aA0Jq6G8k5voTzwfw4jcNsDMSk3rvNNFPJv3S8UZYH2</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Ray, Kyle</creator><creator>Yore, Alexander E</creator><creator>Mou, Tong</creator><creator>Jha, Sauraj</creator><creator>Smithe, Kirby K. H</creator><creator>Wang, Bin</creator><creator>Pop, Eric</creator><creator>Newaz, A. K. M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8159-1604</orcidid><orcidid>https://orcid.org/0000-0001-8246-1422</orcidid><orcidid>https://orcid.org/0000000182461422</orcidid><orcidid>https://orcid.org/0000000181591604</orcidid></search><sort><creationdate>20170627</creationdate><title>Photoresponse of Natural van der Waals Heterostructures</title><author>Ray, Kyle ; Yore, Alexander E ; Mou, Tong ; Jha, Sauraj ; Smithe, Kirby K. H ; Wang, Bin ; Pop, Eric ; Newaz, A. K. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-f25ed9fc6197bec19f4fde2b678ca6f6c32e4c0b3c9b0f18425b6fb707931b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>density functional theory</topic><topic>electronic transport</topic><topic>franckeite</topic><topic>MATERIALS SCIENCE</topic><topic>photocurrent spectroscopy</topic><topic>photodetectors</topic><topic>van der Waals heterostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Kyle</creatorcontrib><creatorcontrib>Yore, Alexander E</creatorcontrib><creatorcontrib>Mou, Tong</creatorcontrib><creatorcontrib>Jha, Sauraj</creatorcontrib><creatorcontrib>Smithe, Kirby K. H</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Pop, Eric</creatorcontrib><creatorcontrib>Newaz, A. K. M</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Kyle</au><au>Yore, Alexander E</au><au>Mou, Tong</au><au>Jha, Sauraj</au><au>Smithe, Kirby K. H</au><au>Wang, Bin</au><au>Pop, Eric</au><au>Newaz, A. K. M</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoresponse of Natural van der Waals Heterostructures</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-06-27</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>6024</spage><epage>6030</epage><pages>6024-6030</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Van der Waals heterostructures consisting of two-dimensional materials offer a platform to obtain materials by design and are very attractive owing to unique electronic states. Research on 2D van der Waals heterostructures (vdWH) has so far been focused on fabricating individually stacked atomically thin unary or binary crystals. Such systems include graphene, hexagonal boron nitride, and members of the transition metal dichalcogenide family. Here we present our experimental study of the optoelectronic properties of a naturally occurring vdWH, known as franckeite, which is a complex layered crystal composed of lead, tin, antimony, iron, and sulfur. We present here that thin film franckeite (60 nm < d < 100 nm) behaves as a narrow band gap semiconductor demonstrating a wide-band photoresponse. We have observed the band-edge transition at ∼1500 nm (∼830 meV) and high external quantum efficiency (EQE ≈ 3%) at room temperature. Laser-power-resolved and temperature-resolved photocurrent measurements reveal that the photocarrier generation and recombination are dominated by continuously distributed trap states within the band gap. To understand wavelength-resolved photocurrent, we also calculated the optical absorption properties via density functional theory. Finally, we have shown that the device has a fast photoresponse with a rise time as fast as ∼1 ms. Our study provides a fundamental understanding of the optoelectronic behavior in a complex naturally occurring vdWH, and may pave an avenue toward developing nanoscale optoelectronic devices with tailored properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28485958</pmid><doi>10.1021/acsnano.7b01918</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8159-1604</orcidid><orcidid>https://orcid.org/0000-0001-8246-1422</orcidid><orcidid>https://orcid.org/0000000182461422</orcidid><orcidid>https://orcid.org/0000000181591604</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2017-06, Vol.11 (6), p.6024-6030 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1487448 |
source | ACS Publications |
subjects | density functional theory electronic transport franckeite MATERIALS SCIENCE photocurrent spectroscopy photodetectors van der Waals heterostructure |
title | Photoresponse of Natural van der Waals Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoresponse%20of%20Natural%20van%20der%20Waals%20Heterostructures&rft.jtitle=ACS%20nano&rft.au=Ray,%20Kyle&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2017-06-27&rft.volume=11&rft.issue=6&rft.spage=6024&rft.epage=6030&rft.pages=6024-6030&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b01918&rft_dat=%3Cproquest_osti_%3E1899403218%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899403218&rft_id=info:pmid/28485958&rfr_iscdi=true |