Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode

In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-11, Vol.25 (11)
Hauptverfasser: Biswas, S., Johnston, M. D., Doron, R., Mikitchuk, D., Maron, Y., Patel, S. G., Kiefer, M. L., Cuneo, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of plasmas
container_volume 25
creator Biswas, S.
Johnston, M. D.
Doron, R.
Mikitchuk, D.
Maron, Y.
Patel, S. G.
Kiefer, M. L.
Cuneo, M. E.
description In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.
doi_str_mv 10.1063/1.5046945
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138312800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</originalsourceid><addsrcrecordid>eNqd0FtLwzAUB_AiCs7pg98g6JNCZ25t00cZ3mDggwq-hTSXNaNNatMN5qc3pRPfhUAO5HdyDv8kuURwgWBO7tAigzQvaXaUzBBkZVrkBT0e6wKmeU4_T5OzEDYQRpWxWWLfaqsbZd0aeAOGWgPxbdvtUIsGtGLt9GAlMCMB1X56d15p0DUitAJYBwTodSMGu7NhtEE3Jv3tTDvrZA2UjS3nyYkRTdAXh3uefDw-vC-f09Xr08vyfpVKwsohVYSUBBWM4krhihitq1gUOpNZpnIc1y4UgaSEOB6tEDMVJpmpCJZQVFSReXI1_evjPjxIO2hZS--clgNHlBUUlxFdT6jr_ddWh4Fv_LZ3cS-OEWEEYQZhVDeTkr0PodeGd71tRb_nCPIxbo74Ie5obyc7ToxxePc_vPP9H-SdMuQHXD-NuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138312800</pqid></control><display><type>article</type><title>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Biswas, S. ; Johnston, M. D. ; Doron, R. ; Mikitchuk, D. ; Maron, Y. ; Patel, S. G. ; Kiefer, M. L. ; Cuneo, M. E.</creator><creatorcontrib>Biswas, S. ; Johnston, M. D. ; Doron, R. ; Mikitchuk, D. ; Maron, Y. ; Patel, S. G. ; Kiefer, M. L. ; Cuneo, M. E. ; Sandia National Laboratories, Washington, D.C. (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5046945</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Anode effect ; Charge distribution ; Diodes ; Electron energy ; Focusing ; Line spectra ; Magnetic fields ; Magnetic shielding ; Plasma ; Plasma density ; Plasma physics ; Relativism ; Relativistic effects ; Relativistic electron beams</subject><ispartof>Physics of plasmas, 2018-11, Vol.25 (11)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</citedby><cites>FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</cites><orcidid>0000-0001-5567-4764 ; 0000-0001-5812-7782 ; 0000000158127782 ; 0000000155674764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5046945$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Patel, S. G.</creatorcontrib><creatorcontrib>Kiefer, M. L.</creatorcontrib><creatorcontrib>Cuneo, M. E.</creatorcontrib><creatorcontrib>Sandia National Laboratories, Washington, D.C. (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</title><title>Physics of plasmas</title><description>In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Anode effect</subject><subject>Charge distribution</subject><subject>Diodes</subject><subject>Electron energy</subject><subject>Focusing</subject><subject>Line spectra</subject><subject>Magnetic fields</subject><subject>Magnetic shielding</subject><subject>Plasma</subject><subject>Plasma density</subject><subject>Plasma physics</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativistic electron beams</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0FtLwzAUB_AiCs7pg98g6JNCZ25t00cZ3mDggwq-hTSXNaNNatMN5qc3pRPfhUAO5HdyDv8kuURwgWBO7tAigzQvaXaUzBBkZVrkBT0e6wKmeU4_T5OzEDYQRpWxWWLfaqsbZd0aeAOGWgPxbdvtUIsGtGLt9GAlMCMB1X56d15p0DUitAJYBwTodSMGu7NhtEE3Jv3tTDvrZA2UjS3nyYkRTdAXh3uefDw-vC-f09Xr08vyfpVKwsohVYSUBBWM4krhihitq1gUOpNZpnIc1y4UgaSEOB6tEDMVJpmpCJZQVFSReXI1_evjPjxIO2hZS--clgNHlBUUlxFdT6jr_ddWh4Fv_LZ3cS-OEWEEYQZhVDeTkr0PodeGd71tRb_nCPIxbo74Ie5obyc7ToxxePc_vPP9H-SdMuQHXD-NuA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Biswas, S.</creator><creator>Johnston, M. D.</creator><creator>Doron, R.</creator><creator>Mikitchuk, D.</creator><creator>Maron, Y.</creator><creator>Patel, S. G.</creator><creator>Kiefer, M. L.</creator><creator>Cuneo, M. E.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5567-4764</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000000158127782</orcidid><orcidid>https://orcid.org/0000000155674764</orcidid></search><sort><creationdate>20181101</creationdate><title>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</title><author>Biswas, S. ; Johnston, M. D. ; Doron, R. ; Mikitchuk, D. ; Maron, Y. ; Patel, S. G. ; Kiefer, M. L. ; Cuneo, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Anode effect</topic><topic>Charge distribution</topic><topic>Diodes</topic><topic>Electron energy</topic><topic>Focusing</topic><topic>Line spectra</topic><topic>Magnetic fields</topic><topic>Magnetic shielding</topic><topic>Plasma</topic><topic>Plasma density</topic><topic>Plasma physics</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativistic electron beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Patel, S. G.</creatorcontrib><creatorcontrib>Kiefer, M. L.</creatorcontrib><creatorcontrib>Cuneo, M. E.</creatorcontrib><creatorcontrib>Sandia National Laboratories, Washington, D.C. (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, S.</au><au>Johnston, M. D.</au><au>Doron, R.</au><au>Mikitchuk, D.</au><au>Maron, Y.</au><au>Patel, S. G.</au><au>Kiefer, M. L.</au><au>Cuneo, M. E.</au><aucorp>Sandia National Laboratories, Washington, D.C. (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</atitle><jtitle>Physics of plasmas</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>25</volume><issue>11</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5046945</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5567-4764</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000000158127782</orcidid><orcidid>https://orcid.org/0000000155674764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-11, Vol.25 (11)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1487429
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Anode effect
Charge distribution
Diodes
Electron energy
Focusing
Line spectra
Magnetic fields
Magnetic shielding
Plasma
Plasma density
Plasma physics
Relativism
Relativistic effects
Relativistic electron beams
title Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shielding%20of%20the%20azimuthal%20magnetic%20field%20by%20the%20anode%20plasma%20in%20a%20relativistic%20self-magnetic-pinch%20diode&rft.jtitle=Physics%20of%20plasmas&rft.au=Biswas,%20S.&rft.aucorp=Sandia%20National%20Laboratories,%20Washington,%20D.C.%20(United%20States)&rft.date=2018-11-01&rft.volume=25&rft.issue=11&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5046945&rft_dat=%3Cproquest_osti_%3E2138312800%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138312800&rft_id=info:pmid/&rfr_iscdi=true