Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode
In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy fo...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2018-11, Vol.25 (11) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 25 |
creator | Biswas, S. Johnston, M. D. Doron, R. Mikitchuk, D. Maron, Y. Patel, S. G. Kiefer, M. L. Cuneo, M. E. |
description | In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios. |
doi_str_mv | 10.1063/1.5046945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138312800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</originalsourceid><addsrcrecordid>eNqd0FtLwzAUB_AiCs7pg98g6JNCZ25t00cZ3mDggwq-hTSXNaNNatMN5qc3pRPfhUAO5HdyDv8kuURwgWBO7tAigzQvaXaUzBBkZVrkBT0e6wKmeU4_T5OzEDYQRpWxWWLfaqsbZd0aeAOGWgPxbdvtUIsGtGLt9GAlMCMB1X56d15p0DUitAJYBwTodSMGu7NhtEE3Jv3tTDvrZA2UjS3nyYkRTdAXh3uefDw-vC-f09Xr08vyfpVKwsohVYSUBBWM4krhihitq1gUOpNZpnIc1y4UgaSEOB6tEDMVJpmpCJZQVFSReXI1_evjPjxIO2hZS--clgNHlBUUlxFdT6jr_ddWh4Fv_LZ3cS-OEWEEYQZhVDeTkr0PodeGd71tRb_nCPIxbo74Ie5obyc7ToxxePc_vPP9H-SdMuQHXD-NuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138312800</pqid></control><display><type>article</type><title>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Biswas, S. ; Johnston, M. D. ; Doron, R. ; Mikitchuk, D. ; Maron, Y. ; Patel, S. G. ; Kiefer, M. L. ; Cuneo, M. E.</creator><creatorcontrib>Biswas, S. ; Johnston, M. D. ; Doron, R. ; Mikitchuk, D. ; Maron, Y. ; Patel, S. G. ; Kiefer, M. L. ; Cuneo, M. E. ; Sandia National Laboratories, Washington, D.C. (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5046945</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Anode effect ; Charge distribution ; Diodes ; Electron energy ; Focusing ; Line spectra ; Magnetic fields ; Magnetic shielding ; Plasma ; Plasma density ; Plasma physics ; Relativism ; Relativistic effects ; Relativistic electron beams</subject><ispartof>Physics of plasmas, 2018-11, Vol.25 (11)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</citedby><cites>FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</cites><orcidid>0000-0001-5567-4764 ; 0000-0001-5812-7782 ; 0000000158127782 ; 0000000155674764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5046945$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Patel, S. G.</creatorcontrib><creatorcontrib>Kiefer, M. L.</creatorcontrib><creatorcontrib>Cuneo, M. E.</creatorcontrib><creatorcontrib>Sandia National Laboratories, Washington, D.C. (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</title><title>Physics of plasmas</title><description>In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Anode effect</subject><subject>Charge distribution</subject><subject>Diodes</subject><subject>Electron energy</subject><subject>Focusing</subject><subject>Line spectra</subject><subject>Magnetic fields</subject><subject>Magnetic shielding</subject><subject>Plasma</subject><subject>Plasma density</subject><subject>Plasma physics</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativistic electron beams</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0FtLwzAUB_AiCs7pg98g6JNCZ25t00cZ3mDggwq-hTSXNaNNatMN5qc3pRPfhUAO5HdyDv8kuURwgWBO7tAigzQvaXaUzBBkZVrkBT0e6wKmeU4_T5OzEDYQRpWxWWLfaqsbZd0aeAOGWgPxbdvtUIsGtGLt9GAlMCMB1X56d15p0DUitAJYBwTodSMGu7NhtEE3Jv3tTDvrZA2UjS3nyYkRTdAXh3uefDw-vC-f09Xr08vyfpVKwsohVYSUBBWM4krhihitq1gUOpNZpnIc1y4UgaSEOB6tEDMVJpmpCJZQVFSReXI1_evjPjxIO2hZS--clgNHlBUUlxFdT6jr_ddWh4Fv_LZ3cS-OEWEEYQZhVDeTkr0PodeGd71tRb_nCPIxbo74Ie5obyc7ToxxePc_vPP9H-SdMuQHXD-NuA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Biswas, S.</creator><creator>Johnston, M. D.</creator><creator>Doron, R.</creator><creator>Mikitchuk, D.</creator><creator>Maron, Y.</creator><creator>Patel, S. G.</creator><creator>Kiefer, M. L.</creator><creator>Cuneo, M. E.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5567-4764</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000000158127782</orcidid><orcidid>https://orcid.org/0000000155674764</orcidid></search><sort><creationdate>20181101</creationdate><title>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</title><author>Biswas, S. ; Johnston, M. D. ; Doron, R. ; Mikitchuk, D. ; Maron, Y. ; Patel, S. G. ; Kiefer, M. L. ; Cuneo, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d339317842bd2b3feebbd27e5c55d620467d303902902ed18fb235fb32c0ab4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Anode effect</topic><topic>Charge distribution</topic><topic>Diodes</topic><topic>Electron energy</topic><topic>Focusing</topic><topic>Line spectra</topic><topic>Magnetic fields</topic><topic>Magnetic shielding</topic><topic>Plasma</topic><topic>Plasma density</topic><topic>Plasma physics</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativistic electron beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Patel, S. G.</creatorcontrib><creatorcontrib>Kiefer, M. L.</creatorcontrib><creatorcontrib>Cuneo, M. E.</creatorcontrib><creatorcontrib>Sandia National Laboratories, Washington, D.C. (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, S.</au><au>Johnston, M. D.</au><au>Doron, R.</au><au>Mikitchuk, D.</au><au>Maron, Y.</au><au>Patel, S. G.</au><au>Kiefer, M. L.</au><au>Cuneo, M. E.</au><aucorp>Sandia National Laboratories, Washington, D.C. (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode</atitle><jtitle>Physics of plasmas</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>25</volume><issue>11</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>In relativistic electron beam diodes, the self-generated magnetic field causes electron-beam focusing at the center of the anode. Generally, plasma is formed all over the anode surface during and after the process of the beam focusing. In this work, we use visible-light Zeeman-effect spectroscopy for the determination of the magnetic field in the anode plasma in the Sandia 10 MV, 200 kA (RITS-6) electron beam diode. The magnetic field is determined from the Zeeman-dominated shapes of the Al III 4s–4p and C IV 3s–3p doublet emissions from various radial positions. Near the anode surface, due to the high plasma density, the spectral line-shapes are Stark-dominated, and only an upper limit of the magnetic field can be determined. The line-shape analysis also yields the plasma density. The data yield quantitatively the magnetic-field shielding in the plasma. The magnetic-field distribution in the plasma is compared to the field-diffusion prediction and found to be consistent with the Spitzer resistivity, estimated using the electron temperature and charge-state distribution determined from line intensity ratios.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5046945</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5567-4764</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000000158127782</orcidid><orcidid>https://orcid.org/0000000155674764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2018-11, Vol.25 (11) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1487429 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Anode effect Charge distribution Diodes Electron energy Focusing Line spectra Magnetic fields Magnetic shielding Plasma Plasma density Plasma physics Relativism Relativistic effects Relativistic electron beams |
title | Shielding of the azimuthal magnetic field by the anode plasma in a relativistic self-magnetic-pinch diode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shielding%20of%20the%20azimuthal%20magnetic%20field%20by%20the%20anode%20plasma%20in%20a%20relativistic%20self-magnetic-pinch%20diode&rft.jtitle=Physics%20of%20plasmas&rft.au=Biswas,%20S.&rft.aucorp=Sandia%20National%20Laboratories,%20Washington,%20D.C.%20(United%20States)&rft.date=2018-11-01&rft.volume=25&rft.issue=11&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5046945&rft_dat=%3Cproquest_osti_%3E2138312800%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138312800&rft_id=info:pmid/&rfr_iscdi=true |