Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ
HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal–organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics hav...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-11, Vol.10 (45), p.39400-39410 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39410 |
---|---|
container_issue | 45 |
container_start_page | 39400 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Thürmer, Konrad Schneider, Christian Stavila, Vitalie Friddle, Raymond W Léonard, François Fischer, Roland A Allendorf, Mark D Talin, A. Alec |
description | HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal–organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from |
doi_str_mv | 10.1021/acsami.8b15158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125313832</sourcerecordid><originalsourceid>FETCH-LOGICAL-a290t-8e2d74e8ed23754ece57a456dcccb70bcbb3f7d0c42766cc39abccc88283fa973</originalsourceid><addsrcrecordid>eNo9kMtLw0AQh4MoWB9Xz4snEaL7bLbHGuoDfFvPy2YysVvSbN3dIP73Rls8zcB8M8zvy7ITRi8Y5ezSQrQrd6ErppjSO9mITaTMNVd897-Xcj87iHFJ6VhwqkZZ89aHxgKSBx_WC9_6j29iu5rMWoQUHNiWPAe_xpAcRuIbUvbial5yMl-4jly7dhXJFTY-4N_atEkYyCtaSM535MulBZmXjy9H2V5j24jH23qYvV_P5uVtfv90c1dO73PLJzTlGnldSNRYc1EoiYCqsFKNawCoClpBVYmmqClIXozHAGJiq2GkNdeisZNCHGanm7s-JmciuISwAN91QxrDpC4kUwN0toHWwX_2GJNZuQjYtrZD30fDGVeCCS34gJ5v0EGuWfo-dMP3hlHza9xsjJutcfEDTcx0sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125313832</pqid></control><display><type>article</type><title>Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ</title><source>American Chemical Society Journals</source><creator>Thürmer, Konrad ; Schneider, Christian ; Stavila, Vitalie ; Friddle, Raymond W ; Léonard, François ; Fischer, Roland A ; Allendorf, Mark D ; Talin, A. Alec</creator><creatorcontrib>Thürmer, Konrad ; Schneider, Christian ; Stavila, Vitalie ; Friddle, Raymond W ; Léonard, François ; Fischer, Roland A ; Allendorf, Mark D ; Talin, A. Alec ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal–organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10–11 S/cm for the parent Cu3BTC2 material to 10–1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b15158</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>2D nucleation ; bimodal growth ; coordination polymers ; electrical conductivity ; MATERIALS SCIENCE ; MOFs ; surface morphology ; thin-film growth</subject><ispartof>ACS applied materials & interfaces, 2018-11, Vol.10 (45), p.39400-39410</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7231-3266 ; 0000-0002-4973-6743 ; 0000-0002-1102-680X ; 0000-0002-7532-5286 ; 0000-0003-0981-0432 ; 0000-0002-3078-7372 ; 0000-0001-5645-8246 ; 0000000172313266 ; 0000000230787372 ; 000000021102680X ; 0000000249736743 ; 0000000156458246 ; 0000000309810432 ; 0000000275325286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b15158$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b15158$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487415$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thürmer, Konrad</creatorcontrib><creatorcontrib>Schneider, Christian</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Friddle, Raymond W</creatorcontrib><creatorcontrib>Léonard, François</creatorcontrib><creatorcontrib>Fischer, Roland A</creatorcontrib><creatorcontrib>Allendorf, Mark D</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal–organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10–11 S/cm for the parent Cu3BTC2 material to 10–1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.</description><subject>2D nucleation</subject><subject>bimodal growth</subject><subject>coordination polymers</subject><subject>electrical conductivity</subject><subject>MATERIALS SCIENCE</subject><subject>MOFs</subject><subject>surface morphology</subject><subject>thin-film growth</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLw0AQh4MoWB9Xz4snEaL7bLbHGuoDfFvPy2YysVvSbN3dIP73Rls8zcB8M8zvy7ITRi8Y5ezSQrQrd6ErppjSO9mITaTMNVd897-Xcj87iHFJ6VhwqkZZ89aHxgKSBx_WC9_6j29iu5rMWoQUHNiWPAe_xpAcRuIbUvbial5yMl-4jly7dhXJFTY-4N_atEkYyCtaSM535MulBZmXjy9H2V5j24jH23qYvV_P5uVtfv90c1dO73PLJzTlGnldSNRYc1EoiYCqsFKNawCoClpBVYmmqClIXozHAGJiq2GkNdeisZNCHGanm7s-JmciuISwAN91QxrDpC4kUwN0toHWwX_2GJNZuQjYtrZD30fDGVeCCS34gJ5v0EGuWfo-dMP3hlHza9xsjJutcfEDTcx0sA</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Thürmer, Konrad</creator><creator>Schneider, Christian</creator><creator>Stavila, Vitalie</creator><creator>Friddle, Raymond W</creator><creator>Léonard, François</creator><creator>Fischer, Roland A</creator><creator>Allendorf, Mark D</creator><creator>Talin, A. Alec</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7231-3266</orcidid><orcidid>https://orcid.org/0000-0002-4973-6743</orcidid><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0002-7532-5286</orcidid><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-3078-7372</orcidid><orcidid>https://orcid.org/0000-0001-5645-8246</orcidid><orcidid>https://orcid.org/0000000172313266</orcidid><orcidid>https://orcid.org/0000000230787372</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid><orcidid>https://orcid.org/0000000249736743</orcidid><orcidid>https://orcid.org/0000000156458246</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><orcidid>https://orcid.org/0000000275325286</orcidid></search><sort><creationdate>20181114</creationdate><title>Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ</title><author>Thürmer, Konrad ; Schneider, Christian ; Stavila, Vitalie ; Friddle, Raymond W ; Léonard, François ; Fischer, Roland A ; Allendorf, Mark D ; Talin, A. Alec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a290t-8e2d74e8ed23754ece57a456dcccb70bcbb3f7d0c42766cc39abccc88283fa973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2D nucleation</topic><topic>bimodal growth</topic><topic>coordination polymers</topic><topic>electrical conductivity</topic><topic>MATERIALS SCIENCE</topic><topic>MOFs</topic><topic>surface morphology</topic><topic>thin-film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thürmer, Konrad</creatorcontrib><creatorcontrib>Schneider, Christian</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Friddle, Raymond W</creatorcontrib><creatorcontrib>Léonard, François</creatorcontrib><creatorcontrib>Fischer, Roland A</creatorcontrib><creatorcontrib>Allendorf, Mark D</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thürmer, Konrad</au><au>Schneider, Christian</au><au>Stavila, Vitalie</au><au>Friddle, Raymond W</au><au>Léonard, François</au><au>Fischer, Roland A</au><au>Allendorf, Mark D</au><au>Talin, A. Alec</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-11-14</date><risdate>2018</risdate><volume>10</volume><issue>45</issue><spage>39400</spage><epage>39410</epage><pages>39400-39410</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal–organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10–11 S/cm for the parent Cu3BTC2 material to 10–1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsami.8b15158</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7231-3266</orcidid><orcidid>https://orcid.org/0000-0002-4973-6743</orcidid><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0002-7532-5286</orcidid><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-3078-7372</orcidid><orcidid>https://orcid.org/0000-0001-5645-8246</orcidid><orcidid>https://orcid.org/0000000172313266</orcidid><orcidid>https://orcid.org/0000000230787372</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid><orcidid>https://orcid.org/0000000249736743</orcidid><orcidid>https://orcid.org/0000000156458246</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><orcidid>https://orcid.org/0000000275325286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-11, Vol.10 (45), p.39400-39410 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1487415 |
source | American Chemical Society Journals |
subjects | 2D nucleation bimodal growth coordination polymers electrical conductivity MATERIALS SCIENCE MOFs surface morphology thin-film growth |
title | Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films Before and After Reaction with TCNQ |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Morphology%20and%20Electrical%20Properties%20of%20Cu3BTC2%20Thin%20Films%20Before%20and%20After%20Reaction%20with%20TCNQ&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Thu%CC%88rmer,%20Konrad&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2018-11-14&rft.volume=10&rft.issue=45&rft.spage=39400&rft.epage=39410&rft.pages=39400-39410&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b15158&rft_dat=%3Cproquest_osti_%3E2125313832%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125313832&rft_id=info:pmid/&rfr_iscdi=true |