Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis
X-ray atomic pair distribution functions (PDFs) were collected from a range of canonical metallic nanomaterials, both elemental and alloyed, prepared using different synthesis methods and exhibiting drastically different morphological properties. Widely applied shape-tuned attenuated crystal (AC) fc...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2018-12, Vol.122 (51), p.29498-29506 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29506 |
---|---|
container_issue | 51 |
container_start_page | 29498 |
container_title | Journal of physical chemistry. C |
container_volume | 122 |
creator | Banerjee, Soham Liu, Chia-Hao Lee, Jennifer D Kovyakh, Anton Grasmik, Viktoria Prymak, Oleg Koenigsmann, Christopher Liu, Haiqing Wang, Lei Abeykoon, A. M. Milinda Wong, Stanislaus S Epple, Matthias Murray, Christopher B Billinge, Simon J. L |
description | X-ray atomic pair distribution functions (PDFs) were collected from a range of canonical metallic nanomaterials, both elemental and alloyed, prepared using different synthesis methods and exhibiting drastically different morphological properties. Widely applied shape-tuned attenuated crystal (AC) fcc models proved inadequate, yielding structured, coherent, and correlated fit residuals. However, equally simple discrete cluster models could account for the largest amplitude features in these difference signals. A hypothesis testing based approach to nanoparticle structure modeling systematically ruled out effects from crystallite size, composition, shape, and surface faceting as primary factors contributing to the AC misfit. On the other hand, decahedrally twinned cluster cores were found to be the origin of the AC structure misfits for a majority of the nanomaterials reported here. It is further motivated that the PDF can readily differentiate between the arrangement of domains in these multiply twinned motifs. Most of the nanomaterials surveyed also fall within the sub-5 nm size regime where traditional electron microscopy cannot easily detect and quantify domain structures, with sampling representative of the average nanocrystal synthesized. The results demonstrate that PDF analysis is a powerful method for understanding internal atomic interfaces in small noble metallic nanomaterials. Such core cluster models, easily built algorithmically, should serve as starting structures for more advanced models able to capture atomic positional disorder, ligand induced or otherwise, near nanocrystal surfaces. |
doi_str_mv | 10.1021/acs.jpcc.8b05897 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b871869394</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-7a8a51471cca5b84430f499509e0f50bbdfa744e1e4d730799c623e97e9375803</originalsourceid><addsrcrecordid>eNp1kM1LAzEUxIMoWKt3j8GTgluTTWI2x9JaLbTag55DNvsWU3Y3JUmF_vduP_Dm6Q3MzIP5IXRLyYiSnD4ZG0frjbWjoiSiUPIMDahieSa5EOd_mstLdBXjmhDBCGUDBPN2E_wPVHjpK2girn3AS0imaZzF76bzGxOSsw3giQ_Q-8G3eJx829sr4wKeupiCK7fJ-Q7Ptp09iPvVdPaAx51pdtHFa3RRmybCzekO0dfs5XPyli0-XueT8SIzjKuUSVMYQbmk1hpRFpwzUnOlBFFAakHKsqpNvwEo8EoyIpWyzzkDJUExKQrChuju-NfH5HS0LoH9tr7rwCZNeSFzIfoQOYZs8DEGqPUmuNaEnaZE71nqnqXes9Qnln3l8Vg5OH4b-l3x__gvcAN3rg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis</title><source>American Chemical Society Journals</source><creator>Banerjee, Soham ; Liu, Chia-Hao ; Lee, Jennifer D ; Kovyakh, Anton ; Grasmik, Viktoria ; Prymak, Oleg ; Koenigsmann, Christopher ; Liu, Haiqing ; Wang, Lei ; Abeykoon, A. M. Milinda ; Wong, Stanislaus S ; Epple, Matthias ; Murray, Christopher B ; Billinge, Simon J. L</creator><creatorcontrib>Banerjee, Soham ; Liu, Chia-Hao ; Lee, Jennifer D ; Kovyakh, Anton ; Grasmik, Viktoria ; Prymak, Oleg ; Koenigsmann, Christopher ; Liu, Haiqing ; Wang, Lei ; Abeykoon, A. M. Milinda ; Wong, Stanislaus S ; Epple, Matthias ; Murray, Christopher B ; Billinge, Simon J. L ; Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI) ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>X-ray atomic pair distribution functions (PDFs) were collected from a range of canonical metallic nanomaterials, both elemental and alloyed, prepared using different synthesis methods and exhibiting drastically different morphological properties. Widely applied shape-tuned attenuated crystal (AC) fcc models proved inadequate, yielding structured, coherent, and correlated fit residuals. However, equally simple discrete cluster models could account for the largest amplitude features in these difference signals. A hypothesis testing based approach to nanoparticle structure modeling systematically ruled out effects from crystallite size, composition, shape, and surface faceting as primary factors contributing to the AC misfit. On the other hand, decahedrally twinned cluster cores were found to be the origin of the AC structure misfits for a majority of the nanomaterials reported here. It is further motivated that the PDF can readily differentiate between the arrangement of domains in these multiply twinned motifs. Most of the nanomaterials surveyed also fall within the sub-5 nm size regime where traditional electron microscopy cannot easily detect and quantify domain structures, with sampling representative of the average nanocrystal synthesized. The results demonstrate that PDF analysis is a powerful method for understanding internal atomic interfaces in small noble metallic nanomaterials. Such core cluster models, easily built algorithmically, should serve as starting structures for more advanced models able to capture atomic positional disorder, ligand induced or otherwise, near nanocrystal surfaces.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b05897</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>Journal of physical chemistry. C, 2018-12, Vol.122 (51), p.29498-29506</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-7a8a51471cca5b84430f499509e0f50bbdfa744e1e4d730799c623e97e9375803</citedby><cites>FETCH-LOGICAL-a349t-7a8a51471cca5b84430f499509e0f50bbdfa744e1e4d730799c623e97e9375803</cites><orcidid>0000-0001-7351-0739 ; 0000-0002-1641-7068 ; 0000-0002-2085-1991 ; 0000-0001-9271-493X ; 0000-0003-2644-3507 ; 0000000216417068 ; 0000000173510739 ; 0000000297344998 ; 000000019271493X ; 0000000220851991 ; 0000000326443507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b05897$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b05897$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487255$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Soham</creatorcontrib><creatorcontrib>Liu, Chia-Hao</creatorcontrib><creatorcontrib>Lee, Jennifer D</creatorcontrib><creatorcontrib>Kovyakh, Anton</creatorcontrib><creatorcontrib>Grasmik, Viktoria</creatorcontrib><creatorcontrib>Prymak, Oleg</creatorcontrib><creatorcontrib>Koenigsmann, Christopher</creatorcontrib><creatorcontrib>Liu, Haiqing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Abeykoon, A. M. Milinda</creatorcontrib><creatorcontrib>Wong, Stanislaus S</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Murray, Christopher B</creatorcontrib><creatorcontrib>Billinge, Simon J. L</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>X-ray atomic pair distribution functions (PDFs) were collected from a range of canonical metallic nanomaterials, both elemental and alloyed, prepared using different synthesis methods and exhibiting drastically different morphological properties. Widely applied shape-tuned attenuated crystal (AC) fcc models proved inadequate, yielding structured, coherent, and correlated fit residuals. However, equally simple discrete cluster models could account for the largest amplitude features in these difference signals. A hypothesis testing based approach to nanoparticle structure modeling systematically ruled out effects from crystallite size, composition, shape, and surface faceting as primary factors contributing to the AC misfit. On the other hand, decahedrally twinned cluster cores were found to be the origin of the AC structure misfits for a majority of the nanomaterials reported here. It is further motivated that the PDF can readily differentiate between the arrangement of domains in these multiply twinned motifs. Most of the nanomaterials surveyed also fall within the sub-5 nm size regime where traditional electron microscopy cannot easily detect and quantify domain structures, with sampling representative of the average nanocrystal synthesized. The results demonstrate that PDF analysis is a powerful method for understanding internal atomic interfaces in small noble metallic nanomaterials. Such core cluster models, easily built algorithmically, should serve as starting structures for more advanced models able to capture atomic positional disorder, ligand induced or otherwise, near nanocrystal surfaces.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEUxIMoWKt3j8GTgluTTWI2x9JaLbTag55DNvsWU3Y3JUmF_vduP_Dm6Q3MzIP5IXRLyYiSnD4ZG0frjbWjoiSiUPIMDahieSa5EOd_mstLdBXjmhDBCGUDBPN2E_wPVHjpK2girn3AS0imaZzF76bzGxOSsw3giQ_Q-8G3eJx829sr4wKeupiCK7fJ-Q7Ptp09iPvVdPaAx51pdtHFa3RRmybCzekO0dfs5XPyli0-XueT8SIzjKuUSVMYQbmk1hpRFpwzUnOlBFFAakHKsqpNvwEo8EoyIpWyzzkDJUExKQrChuju-NfH5HS0LoH9tr7rwCZNeSFzIfoQOYZs8DEGqPUmuNaEnaZE71nqnqXes9Qnln3l8Vg5OH4b-l3x__gvcAN3rg</recordid><startdate>20181227</startdate><enddate>20181227</enddate><creator>Banerjee, Soham</creator><creator>Liu, Chia-Hao</creator><creator>Lee, Jennifer D</creator><creator>Kovyakh, Anton</creator><creator>Grasmik, Viktoria</creator><creator>Prymak, Oleg</creator><creator>Koenigsmann, Christopher</creator><creator>Liu, Haiqing</creator><creator>Wang, Lei</creator><creator>Abeykoon, A. M. Milinda</creator><creator>Wong, Stanislaus S</creator><creator>Epple, Matthias</creator><creator>Murray, Christopher B</creator><creator>Billinge, Simon J. L</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7351-0739</orcidid><orcidid>https://orcid.org/0000-0002-1641-7068</orcidid><orcidid>https://orcid.org/0000-0002-2085-1991</orcidid><orcidid>https://orcid.org/0000-0001-9271-493X</orcidid><orcidid>https://orcid.org/0000-0003-2644-3507</orcidid><orcidid>https://orcid.org/0000000216417068</orcidid><orcidid>https://orcid.org/0000000173510739</orcidid><orcidid>https://orcid.org/0000000297344998</orcidid><orcidid>https://orcid.org/000000019271493X</orcidid><orcidid>https://orcid.org/0000000220851991</orcidid><orcidid>https://orcid.org/0000000326443507</orcidid></search><sort><creationdate>20181227</creationdate><title>Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis</title><author>Banerjee, Soham ; Liu, Chia-Hao ; Lee, Jennifer D ; Kovyakh, Anton ; Grasmik, Viktoria ; Prymak, Oleg ; Koenigsmann, Christopher ; Liu, Haiqing ; Wang, Lei ; Abeykoon, A. M. Milinda ; Wong, Stanislaus S ; Epple, Matthias ; Murray, Christopher B ; Billinge, Simon J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-7a8a51471cca5b84430f499509e0f50bbdfa744e1e4d730799c623e97e9375803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Soham</creatorcontrib><creatorcontrib>Liu, Chia-Hao</creatorcontrib><creatorcontrib>Lee, Jennifer D</creatorcontrib><creatorcontrib>Kovyakh, Anton</creatorcontrib><creatorcontrib>Grasmik, Viktoria</creatorcontrib><creatorcontrib>Prymak, Oleg</creatorcontrib><creatorcontrib>Koenigsmann, Christopher</creatorcontrib><creatorcontrib>Liu, Haiqing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Abeykoon, A. M. Milinda</creatorcontrib><creatorcontrib>Wong, Stanislaus S</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Murray, Christopher B</creatorcontrib><creatorcontrib>Billinge, Simon J. L</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Soham</au><au>Liu, Chia-Hao</au><au>Lee, Jennifer D</au><au>Kovyakh, Anton</au><au>Grasmik, Viktoria</au><au>Prymak, Oleg</au><au>Koenigsmann, Christopher</au><au>Liu, Haiqing</au><au>Wang, Lei</au><au>Abeykoon, A. M. Milinda</au><au>Wong, Stanislaus S</au><au>Epple, Matthias</au><au>Murray, Christopher B</au><au>Billinge, Simon J. L</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-12-27</date><risdate>2018</risdate><volume>122</volume><issue>51</issue><spage>29498</spage><epage>29506</epage><pages>29498-29506</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>X-ray atomic pair distribution functions (PDFs) were collected from a range of canonical metallic nanomaterials, both elemental and alloyed, prepared using different synthesis methods and exhibiting drastically different morphological properties. Widely applied shape-tuned attenuated crystal (AC) fcc models proved inadequate, yielding structured, coherent, and correlated fit residuals. However, equally simple discrete cluster models could account for the largest amplitude features in these difference signals. A hypothesis testing based approach to nanoparticle structure modeling systematically ruled out effects from crystallite size, composition, shape, and surface faceting as primary factors contributing to the AC misfit. On the other hand, decahedrally twinned cluster cores were found to be the origin of the AC structure misfits for a majority of the nanomaterials reported here. It is further motivated that the PDF can readily differentiate between the arrangement of domains in these multiply twinned motifs. Most of the nanomaterials surveyed also fall within the sub-5 nm size regime where traditional electron microscopy cannot easily detect and quantify domain structures, with sampling representative of the average nanocrystal synthesized. The results demonstrate that PDF analysis is a powerful method for understanding internal atomic interfaces in small noble metallic nanomaterials. Such core cluster models, easily built algorithmically, should serve as starting structures for more advanced models able to capture atomic positional disorder, ligand induced or otherwise, near nanocrystal surfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b05897</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7351-0739</orcidid><orcidid>https://orcid.org/0000-0002-1641-7068</orcidid><orcidid>https://orcid.org/0000-0002-2085-1991</orcidid><orcidid>https://orcid.org/0000-0001-9271-493X</orcidid><orcidid>https://orcid.org/0000-0003-2644-3507</orcidid><orcidid>https://orcid.org/0000000216417068</orcidid><orcidid>https://orcid.org/0000000173510739</orcidid><orcidid>https://orcid.org/0000000297344998</orcidid><orcidid>https://orcid.org/000000019271493X</orcidid><orcidid>https://orcid.org/0000000220851991</orcidid><orcidid>https://orcid.org/0000000326443507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2018-12, Vol.122 (51), p.29498-29506 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1487255 |
source | American Chemical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY |
title | Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Models%20for%20Metallic%20Nanoparticle%20Cores%20from%20Atomic%20Pair%20Distribution%20Function%20(PDF)%20Analysis&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Banerjee,%20Soham&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Catalysis%20Center%20for%20Energy%20Innovation%20(CCEI)&rft.date=2018-12-27&rft.volume=122&rft.issue=51&rft.spage=29498&rft.epage=29506&rft.pages=29498-29506&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b05897&rft_dat=%3Cacs_osti_%3Eb871869394%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |