Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels
We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2018-12, Vol.511, p.438-445 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 445 |
---|---|
container_issue | |
container_start_page | 438 |
container_title | Journal of nuclear materials |
container_volume | 511 |
creator | Liang, Linyun Kim, Yeon Soo Mei, Zhi-Gang Aagesen, Larry K. Yacout, Abdellatif M. |
description | We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels. |
doi_str_mv | 10.1016/j.jnucmat.2018.09.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311518307657</els_id><sourcerecordid>2135602841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhi3USt1CH6GSRc8JM3GySU5VhUqLtIgLnC3HHoOjbAy2g7Q8PQ7LnZPl0Tejb-Zn7CdCiYDbi7Ec50XvVSorwK6EvoSmPmEb7FpR1F0FX9gGoKoKgdh8Y99jHAGg6aHZsHDlYnR-5g8q8mEZhokiV7PhgXQ4xKSmyb2qlInCzWbRZLihh6DMe417y9MjcbKWdHIvtP7CXk1c-5XOJZcO3M38vmhvPLcLTfGMfbVqivTj4z1l91d_7y7_F7vbf9eXf3aFrhFT0SpbW2EECUWglDXKALZVM7R9BuxQQ697SwNUWJMasEdjLQrTa7BktkKcsvPjXB-Tk1G7RPoxe81ZVWLdtflaGfp1hJ6Cf14oJjn6JczZS1Yomi1UXb1SzZHSwccYyMqn4PYqHCSCXDOQo_zIQK4ZSOhlziD3_T725bXpxVFYNWjOV3RhtTDefTLhDdF6lQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135602841</pqid></control><display><type>article</type><title>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liang, Linyun ; Kim, Yeon Soo ; Mei, Zhi-Gang ; Aagesen, Larry K. ; Yacout, Abdellatif M.</creator><creatorcontrib>Liang, Linyun ; Kim, Yeon Soo ; Mei, Zhi-Gang ; Aagesen, Larry K. ; Yacout, Abdellatif M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2018.09.054</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bubbles ; Computer simulation ; Degradation ; Density ; Fission ; Fuels ; Gases ; Grain boundaries ; Grain structure ; Heat conductivity ; Heat transfer ; MATERIALS SCIENCE ; Mathematical models ; Recrystallization ; Thermal conductivity ; Uranium base alloys</subject><ispartof>Journal of nuclear materials, 2018-12, Vol.511, p.438-445</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Dec 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</citedby><cites>FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</cites><orcidid>0000-0003-4936-676X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311518307657$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487201$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Linyun</creatorcontrib><creatorcontrib>Kim, Yeon Soo</creatorcontrib><creatorcontrib>Mei, Zhi-Gang</creatorcontrib><creatorcontrib>Aagesen, Larry K.</creatorcontrib><creatorcontrib>Yacout, Abdellatif M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</title><title>Journal of nuclear materials</title><description>We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels.</description><subject>Bubbles</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>Density</subject><subject>Fission</subject><subject>Fuels</subject><subject>Gases</subject><subject>Grain boundaries</subject><subject>Grain structure</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Recrystallization</subject><subject>Thermal conductivity</subject><subject>Uranium base alloys</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhi3USt1CH6GSRc8JM3GySU5VhUqLtIgLnC3HHoOjbAy2g7Q8PQ7LnZPl0Tejb-Zn7CdCiYDbi7Ec50XvVSorwK6EvoSmPmEb7FpR1F0FX9gGoKoKgdh8Y99jHAGg6aHZsHDlYnR-5g8q8mEZhokiV7PhgXQ4xKSmyb2qlInCzWbRZLihh6DMe417y9MjcbKWdHIvtP7CXk1c-5XOJZcO3M38vmhvPLcLTfGMfbVqivTj4z1l91d_7y7_F7vbf9eXf3aFrhFT0SpbW2EECUWglDXKALZVM7R9BuxQQ697SwNUWJMasEdjLQrTa7BktkKcsvPjXB-Tk1G7RPoxe81ZVWLdtflaGfp1hJ6Cf14oJjn6JczZS1Yomi1UXb1SzZHSwccYyMqn4PYqHCSCXDOQo_zIQK4ZSOhlziD3_T725bXpxVFYNWjOV3RhtTDefTLhDdF6lQ4</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Liang, Linyun</creator><creator>Kim, Yeon Soo</creator><creator>Mei, Zhi-Gang</creator><creator>Aagesen, Larry K.</creator><creator>Yacout, Abdellatif M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4936-676X</orcidid></search><sort><creationdate>20181201</creationdate><title>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</title><author>Liang, Linyun ; Kim, Yeon Soo ; Mei, Zhi-Gang ; Aagesen, Larry K. ; Yacout, Abdellatif M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bubbles</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>Density</topic><topic>Fission</topic><topic>Fuels</topic><topic>Gases</topic><topic>Grain boundaries</topic><topic>Grain structure</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Recrystallization</topic><topic>Thermal conductivity</topic><topic>Uranium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Linyun</creatorcontrib><creatorcontrib>Kim, Yeon Soo</creatorcontrib><creatorcontrib>Mei, Zhi-Gang</creatorcontrib><creatorcontrib>Aagesen, Larry K.</creatorcontrib><creatorcontrib>Yacout, Abdellatif M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Linyun</au><au>Kim, Yeon Soo</au><au>Mei, Zhi-Gang</au><au>Aagesen, Larry K.</au><au>Yacout, Abdellatif M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</atitle><jtitle>Journal of nuclear materials</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>511</volume><spage>438</spage><epage>445</epage><pages>438-445</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2018.09.054</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4936-676X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2018-12, Vol.511, p.438-445 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_1487201 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bubbles Computer simulation Degradation Density Fission Fuels Gases Grain boundaries Grain structure Heat conductivity Heat transfer MATERIALS SCIENCE Mathematical models Recrystallization Thermal conductivity Uranium base alloys |
title | Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fission%20gas%20bubbles%20and%20recrystallization-induced%20degradation%20of%20the%20effective%20thermal%20conductivity%20in%20U-7Mo%20fuels&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Liang,%20Linyun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-12-01&rft.volume=511&rft.spage=438&rft.epage=445&rft.pages=438-445&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2018.09.054&rft_dat=%3Cproquest_osti_%3E2135602841%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135602841&rft_id=info:pmid/&rft_els_id=S0022311518307657&rfr_iscdi=true |