Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels

We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2018-12, Vol.511, p.438-445
Hauptverfasser: Liang, Linyun, Kim, Yeon Soo, Mei, Zhi-Gang, Aagesen, Larry K., Yacout, Abdellatif M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue
container_start_page 438
container_title Journal of nuclear materials
container_volume 511
creator Liang, Linyun
Kim, Yeon Soo
Mei, Zhi-Gang
Aagesen, Larry K.
Yacout, Abdellatif M.
description We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels.
doi_str_mv 10.1016/j.jnucmat.2018.09.054
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311518307657</els_id><sourcerecordid>2135602841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhi3USt1CH6GSRc8JM3GySU5VhUqLtIgLnC3HHoOjbAy2g7Q8PQ7LnZPl0Tejb-Zn7CdCiYDbi7Ec50XvVSorwK6EvoSmPmEb7FpR1F0FX9gGoKoKgdh8Y99jHAGg6aHZsHDlYnR-5g8q8mEZhokiV7PhgXQ4xKSmyb2qlInCzWbRZLihh6DMe417y9MjcbKWdHIvtP7CXk1c-5XOJZcO3M38vmhvPLcLTfGMfbVqivTj4z1l91d_7y7_F7vbf9eXf3aFrhFT0SpbW2EECUWglDXKALZVM7R9BuxQQ697SwNUWJMasEdjLQrTa7BktkKcsvPjXB-Tk1G7RPoxe81ZVWLdtflaGfp1hJ6Cf14oJjn6JczZS1Yomi1UXb1SzZHSwccYyMqn4PYqHCSCXDOQo_zIQK4ZSOhlziD3_T725bXpxVFYNWjOV3RhtTDefTLhDdF6lQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135602841</pqid></control><display><type>article</type><title>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liang, Linyun ; Kim, Yeon Soo ; Mei, Zhi-Gang ; Aagesen, Larry K. ; Yacout, Abdellatif M.</creator><creatorcontrib>Liang, Linyun ; Kim, Yeon Soo ; Mei, Zhi-Gang ; Aagesen, Larry K. ; Yacout, Abdellatif M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2018.09.054</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bubbles ; Computer simulation ; Degradation ; Density ; Fission ; Fuels ; Gases ; Grain boundaries ; Grain structure ; Heat conductivity ; Heat transfer ; MATERIALS SCIENCE ; Mathematical models ; Recrystallization ; Thermal conductivity ; Uranium base alloys</subject><ispartof>Journal of nuclear materials, 2018-12, Vol.511, p.438-445</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Dec 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</citedby><cites>FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</cites><orcidid>0000-0003-4936-676X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311518307657$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487201$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Linyun</creatorcontrib><creatorcontrib>Kim, Yeon Soo</creatorcontrib><creatorcontrib>Mei, Zhi-Gang</creatorcontrib><creatorcontrib>Aagesen, Larry K.</creatorcontrib><creatorcontrib>Yacout, Abdellatif M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</title><title>Journal of nuclear materials</title><description>We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels.</description><subject>Bubbles</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>Density</subject><subject>Fission</subject><subject>Fuels</subject><subject>Gases</subject><subject>Grain boundaries</subject><subject>Grain structure</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Recrystallization</subject><subject>Thermal conductivity</subject><subject>Uranium base alloys</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhi3USt1CH6GSRc8JM3GySU5VhUqLtIgLnC3HHoOjbAy2g7Q8PQ7LnZPl0Tejb-Zn7CdCiYDbi7Ec50XvVSorwK6EvoSmPmEb7FpR1F0FX9gGoKoKgdh8Y99jHAGg6aHZsHDlYnR-5g8q8mEZhokiV7PhgXQ4xKSmyb2qlInCzWbRZLihh6DMe417y9MjcbKWdHIvtP7CXk1c-5XOJZcO3M38vmhvPLcLTfGMfbVqivTj4z1l91d_7y7_F7vbf9eXf3aFrhFT0SpbW2EECUWglDXKALZVM7R9BuxQQ697SwNUWJMasEdjLQrTa7BktkKcsvPjXB-Tk1G7RPoxe81ZVWLdtflaGfp1hJ6Cf14oJjn6JczZS1Yomi1UXb1SzZHSwccYyMqn4PYqHCSCXDOQo_zIQK4ZSOhlziD3_T725bXpxVFYNWjOV3RhtTDefTLhDdF6lQ4</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Liang, Linyun</creator><creator>Kim, Yeon Soo</creator><creator>Mei, Zhi-Gang</creator><creator>Aagesen, Larry K.</creator><creator>Yacout, Abdellatif M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4936-676X</orcidid></search><sort><creationdate>20181201</creationdate><title>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</title><author>Liang, Linyun ; Kim, Yeon Soo ; Mei, Zhi-Gang ; Aagesen, Larry K. ; Yacout, Abdellatif M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7af4f3d3e3ae0aafdad01725b79c41fb409c9feb0214eab191dff13d9c0fed633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bubbles</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>Density</topic><topic>Fission</topic><topic>Fuels</topic><topic>Gases</topic><topic>Grain boundaries</topic><topic>Grain structure</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Recrystallization</topic><topic>Thermal conductivity</topic><topic>Uranium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Linyun</creatorcontrib><creatorcontrib>Kim, Yeon Soo</creatorcontrib><creatorcontrib>Mei, Zhi-Gang</creatorcontrib><creatorcontrib>Aagesen, Larry K.</creatorcontrib><creatorcontrib>Yacout, Abdellatif M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Linyun</au><au>Kim, Yeon Soo</au><au>Mei, Zhi-Gang</au><au>Aagesen, Larry K.</au><au>Yacout, Abdellatif M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels</atitle><jtitle>Journal of nuclear materials</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>511</volume><spage>438</spage><epage>445</epage><pages>438-445</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>We have developed a mesoscale model to calculate the degradation of the effective thermal conductivity in irradiated U-Mo alloys caused by the fission-induced gas bubbles and recrystallization. The phase-field approach is employed to generate the grain microstructures of U-7Mo fuels with intra- and inter-granular gas bubbles. Based on the phase-field microstructures, the thermal conductivities of U-7Mo as a function of the fission density can be predicted by the developed mesoscale model. The predicted values of effective thermal conductivities are consistent with available experimental data although the grain structure and the distribution of gas bubbles were generated from the phase-field simulations that may not exactly correspond to experimental microstructures. Results show that the effective thermal conductivity decreases rapidly with recrystallization compared to the one prior to recrystallization, which can be attributed to the sudden increase of grain boundary densities and corresponding intergranular gas bubbles at high fission densities. Smaller grain size fuel structure has a lower thermal conductivity at the same fission density due to the increased grain boundary density. The current study can provide a better understanding of the fission-induced degradation mechanism of the thermal conductivity in U-Mo fuels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2018.09.054</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4936-676X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2018-12, Vol.511, p.438-445
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1487201
source Elsevier ScienceDirect Journals Complete
subjects Bubbles
Computer simulation
Degradation
Density
Fission
Fuels
Gases
Grain boundaries
Grain structure
Heat conductivity
Heat transfer
MATERIALS SCIENCE
Mathematical models
Recrystallization
Thermal conductivity
Uranium base alloys
title Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fission%20gas%20bubbles%20and%20recrystallization-induced%20degradation%20of%20the%20effective%20thermal%20conductivity%20in%20U-7Mo%20fuels&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Liang,%20Linyun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-12-01&rft.volume=511&rft.spage=438&rft.epage=445&rft.pages=438-445&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2018.09.054&rft_dat=%3Cproquest_osti_%3E2135602841%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135602841&rft_id=info:pmid/&rft_els_id=S0022311518307657&rfr_iscdi=true