On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries

An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-10, Vol.122 (41), p.23251-23260
Hauptverfasser: Gutierrez, Arturo, Dose, Wesley M, Borkiewicz, Olaf, Guo, Fangmin, Avdeev, Maxim, Kim, Soojeong, Fister, Timothy T, Ren, Yang, Bareño, Javier, Johnson, Christopher S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23260
container_issue 41
container_start_page 23251
container_title Journal of physical chemistry. C
container_volume 122
creator Gutierrez, Arturo
Dose, Wesley M
Borkiewicz, Olaf
Guo, Fangmin
Avdeev, Maxim
Kim, Soojeong
Fister, Timothy T
Ren, Yang
Bareño, Javier
Johnson, Christopher S
description An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.
doi_str_mv 10.1021/acs.jpcc.8b05537
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1487115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c47107964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</originalsourceid><addsrcrecordid>eNp1kMtOwzAURCMEEqWwZ2mxhbR2HOexhPKqVBokCtvIsW9al9aJbFeirPoLiD_sl5BQBCtWd6Q7M9IczzsluEdwQPpc2N68FqKXFJgxGu95HZLSwI9DxvZ_dRgfekfWzjFmFBPa8d4zja6VNavaKT1FbgZozM-3m49hpfsvXHAt1igzEkz7Vho9Bv5kXQN6qqRaLbebzweup1yDhUaPlXiFBcrelAQ04G5WSbCorMxfKbrizjVtYI-9g5IvLJz83K73fHszGdz7o-xuOLgc-TwkzPlJJDEOwiQCFpVhBALHNKRJIaMgIFQWURAHImnmRc3GkJapTFPJWAxMMFkAo13vbNdbWadyK5QDMROV1iBcTsIkJqQ14Z1JmMpaA2VeG7XkZp0TnLeA8wZw3gLOfwA3kYtd5PtTrYxuVvxv_wK8EoGr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</title><source>American Chemical Society Journals</source><creator>Gutierrez, Arturo ; Dose, Wesley M ; Borkiewicz, Olaf ; Guo, Fangmin ; Avdeev, Maxim ; Kim, Soojeong ; Fister, Timothy T ; Ren, Yang ; Bareño, Javier ; Johnson, Christopher S</creator><creatorcontrib>Gutierrez, Arturo ; Dose, Wesley M ; Borkiewicz, Olaf ; Guo, Fangmin ; Avdeev, Maxim ; Kim, Soojeong ; Fister, Timothy T ; Ren, Yang ; Bareño, Javier ; Johnson, Christopher S ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b05537</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE ; Sodium battery</subject><ispartof>Journal of physical chemistry. C, 2018-10, Vol.122 (41), p.23251-23260</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</citedby><cites>FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</cites><orcidid>0000-0003-4357-6889 ; 0000-0001-6537-6170 ; 0000-0003-1230-9278 ; 0000-0002-2899-3089 ; 0000000165376170 ; 0000000343576889 ; 0000000312309278 ; 0000000228993089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b05537$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b05537$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487115$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutierrez, Arturo</creatorcontrib><creatorcontrib>Dose, Wesley M</creatorcontrib><creatorcontrib>Borkiewicz, Olaf</creatorcontrib><creatorcontrib>Guo, Fangmin</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Kim, Soojeong</creatorcontrib><creatorcontrib>Fister, Timothy T</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Bareño, Javier</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.</description><subject>ENERGY STORAGE</subject><subject>Sodium battery</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAURCMEEqWwZ2mxhbR2HOexhPKqVBokCtvIsW9al9aJbFeirPoLiD_sl5BQBCtWd6Q7M9IczzsluEdwQPpc2N68FqKXFJgxGu95HZLSwI9DxvZ_dRgfekfWzjFmFBPa8d4zja6VNavaKT1FbgZozM-3m49hpfsvXHAt1igzEkz7Vho9Bv5kXQN6qqRaLbebzweup1yDhUaPlXiFBcrelAQ04G5WSbCorMxfKbrizjVtYI-9g5IvLJz83K73fHszGdz7o-xuOLgc-TwkzPlJJDEOwiQCFpVhBALHNKRJIaMgIFQWURAHImnmRc3GkJapTFPJWAxMMFkAo13vbNdbWadyK5QDMROV1iBcTsIkJqQ14Z1JmMpaA2VeG7XkZp0TnLeA8wZw3gLOfwA3kYtd5PtTrYxuVvxv_wK8EoGr</recordid><startdate>20181018</startdate><enddate>20181018</enddate><creator>Gutierrez, Arturo</creator><creator>Dose, Wesley M</creator><creator>Borkiewicz, Olaf</creator><creator>Guo, Fangmin</creator><creator>Avdeev, Maxim</creator><creator>Kim, Soojeong</creator><creator>Fister, Timothy T</creator><creator>Ren, Yang</creator><creator>Bareño, Javier</creator><creator>Johnson, Christopher S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4357-6889</orcidid><orcidid>https://orcid.org/0000-0001-6537-6170</orcidid><orcidid>https://orcid.org/0000-0003-1230-9278</orcidid><orcidid>https://orcid.org/0000-0002-2899-3089</orcidid><orcidid>https://orcid.org/0000000165376170</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000312309278</orcidid><orcidid>https://orcid.org/0000000228993089</orcidid></search><sort><creationdate>20181018</creationdate><title>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</title><author>Gutierrez, Arturo ; Dose, Wesley M ; Borkiewicz, Olaf ; Guo, Fangmin ; Avdeev, Maxim ; Kim, Soojeong ; Fister, Timothy T ; Ren, Yang ; Bareño, Javier ; Johnson, Christopher S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-86d002486e56f46ec073438bd62213db6272c8932619343f9d99d557e5c5dbe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ENERGY STORAGE</topic><topic>Sodium battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez, Arturo</creatorcontrib><creatorcontrib>Dose, Wesley M</creatorcontrib><creatorcontrib>Borkiewicz, Olaf</creatorcontrib><creatorcontrib>Guo, Fangmin</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Kim, Soojeong</creatorcontrib><creatorcontrib>Fister, Timothy T</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Bareño, Javier</creatorcontrib><creatorcontrib>Johnson, Christopher S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutierrez, Arturo</au><au>Dose, Wesley M</au><au>Borkiewicz, Olaf</au><au>Guo, Fangmin</au><au>Avdeev, Maxim</au><au>Kim, Soojeong</au><au>Fister, Timothy T</au><au>Ren, Yang</au><au>Bareño, Javier</au><au>Johnson, Christopher S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-10-18</date><risdate>2018</risdate><volume>122</volume><issue>41</issue><spage>23251</spage><epage>23260</epage><pages>23251-23260</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>An investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b05537</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4357-6889</orcidid><orcidid>https://orcid.org/0000-0001-6537-6170</orcidid><orcidid>https://orcid.org/0000-0003-1230-9278</orcidid><orcidid>https://orcid.org/0000-0002-2899-3089</orcidid><orcidid>https://orcid.org/0000000165376170</orcidid><orcidid>https://orcid.org/0000000343576889</orcidid><orcidid>https://orcid.org/0000000312309278</orcidid><orcidid>https://orcid.org/0000000228993089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-10, Vol.122 (41), p.23251-23260
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1487115
source American Chemical Society Journals
subjects ENERGY STORAGE
Sodium battery
title On Disrupting the Na+‑Ion/Vacancy Ordering in P2-Type Sodium–Manganese–Nickel Oxide Cathodes for Na+‑Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Disrupting%20the%20Na+%E2%80%91Ion/Vacancy%20Ordering%20in%20P2-Type%20Sodium%E2%80%93Manganese%E2%80%93Nickel%20Oxide%20Cathodes%20for%20Na+%E2%80%91Ion%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gutierrez,%20Arturo&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-10-18&rft.volume=122&rft.issue=41&rft.spage=23251&rft.epage=23260&rft.pages=23251-23260&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b05537&rft_dat=%3Cacs_osti_%3Ec47107964%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true