Chemo-mechanical coupling in kerogen gas adsorption/desorption
Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale g...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018, Vol.2 (18), p.1239-12395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12395 |
---|---|
container_issue | 18 |
container_start_page | 1239 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 2 |
creator | Ho, Tuan Anh Wang, Yifeng Criscenti, Louise J |
description | Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH
4
and CO
2
adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.
Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study. |
doi_str_mv | 10.1039/c8cp01068d |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1485833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036502804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgit8X70rViwjVpGm66UWQ-gkLetBzyCaT3a5tUpP24L83uu4KHjxl4H0YJjMIHRB8QTAtLxVXHSa44HoNbZO8oGmJeb6-qkfFFtoJYY4xJozQTbSVlaxgeca30VU1g9alLaiZtLWSTaLc0DW1nSa1Td7AuynYZCpDInVwvutrZy81LMs9tGFkE2D_591Fr3e3L9VDOn66f6yux6mKI_SpZkYZwAXRVAOUhBqqGZOETLjKNJAJU5wyqglMdGZkqXipNctNaag0Oc7oLjpZ9HWhr0VQdR8HVs5aUL0gOWec0ojOFqjz7n2A0Iu2DgqaRlpwQxAZJiNcMIxHkZ7-oXM3eBu_EBWNJuM4j-p8oZR3IXgwovN1K_2HIFh8rV5UvHr-Xv1NxEc_LYdJC3pFl7uO4HABfFCr9Pd2MT_-LxedNvQTri2TMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036502804</pqid></control><display><type>article</type><title>Chemo-mechanical coupling in kerogen gas adsorption/desorption</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ho, Tuan Anh ; Wang, Yifeng ; Criscenti, Louise J</creator><creatorcontrib>Ho, Tuan Anh ; Wang, Yifeng ; Criscenti, Louise J ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH
4
and CO
2
adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.
Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp01068d</identifier><identifier>PMID: 29565428</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Carbon dioxide ; Carbon sequestration ; Computer simulation ; Coupling (molecular) ; Deformation ; Gas pressure ; GEOSCIENCES ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Kerogen ; Molecular chains ; Molecular dynamics ; Molecular structure ; Natural gas ; Pore size ; Porosity ; Shale gas ; Storage capacity ; Strain ; Stress relaxation ; Surface chemistry ; Swelling</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (18), p.1239-12395</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</citedby><cites>FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</cites><orcidid>0000-0002-8129-1027 ; 0000000281291027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29565428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1485833$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Tuan Anh</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Chemo-mechanical coupling in kerogen gas adsorption/desorption</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH
4
and CO
2
adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.
Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Deformation</subject><subject>Gas pressure</subject><subject>GEOSCIENCES</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Kerogen</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Natural gas</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Shale gas</subject><subject>Storage capacity</subject><subject>Strain</subject><subject>Stress relaxation</subject><subject>Surface chemistry</subject><subject>Swelling</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90U1LxDAQBuAgit8X70rViwjVpGm66UWQ-gkLetBzyCaT3a5tUpP24L83uu4KHjxl4H0YJjMIHRB8QTAtLxVXHSa44HoNbZO8oGmJeb6-qkfFFtoJYY4xJozQTbSVlaxgeca30VU1g9alLaiZtLWSTaLc0DW1nSa1Td7AuynYZCpDInVwvutrZy81LMs9tGFkE2D_591Fr3e3L9VDOn66f6yux6mKI_SpZkYZwAXRVAOUhBqqGZOETLjKNJAJU5wyqglMdGZkqXipNctNaag0Oc7oLjpZ9HWhr0VQdR8HVs5aUL0gOWec0ojOFqjz7n2A0Iu2DgqaRlpwQxAZJiNcMIxHkZ7-oXM3eBu_EBWNJuM4j-p8oZR3IXgwovN1K_2HIFh8rV5UvHr-Xv1NxEc_LYdJC3pFl7uO4HABfFCr9Pd2MT_-LxedNvQTri2TMQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Ho, Tuan Anh</creator><creator>Wang, Yifeng</creator><creator>Criscenti, Louise J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8129-1027</orcidid><orcidid>https://orcid.org/0000000281291027</orcidid></search><sort><creationdate>2018</creationdate><title>Chemo-mechanical coupling in kerogen gas adsorption/desorption</title><author>Ho, Tuan Anh ; Wang, Yifeng ; Criscenti, Louise J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Deformation</topic><topic>Gas pressure</topic><topic>GEOSCIENCES</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Kerogen</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Natural gas</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Shale gas</topic><topic>Storage capacity</topic><topic>Strain</topic><topic>Stress relaxation</topic><topic>Surface chemistry</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Tuan Anh</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Tuan Anh</au><au>Wang, Yifeng</au><au>Criscenti, Louise J</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemo-mechanical coupling in kerogen gas adsorption/desorption</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>18</issue><spage>1239</spage><epage>12395</epage><pages>1239-12395</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH
4
and CO
2
adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.
Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29565428</pmid><doi>10.1039/c8cp01068d</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8129-1027</orcidid><orcidid>https://orcid.org/0000000281291027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018, Vol.2 (18), p.1239-12395 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1485833 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorption Carbon dioxide Carbon sequestration Computer simulation Coupling (molecular) Deformation Gas pressure GEOSCIENCES INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Kerogen Molecular chains Molecular dynamics Molecular structure Natural gas Pore size Porosity Shale gas Storage capacity Strain Stress relaxation Surface chemistry Swelling |
title | Chemo-mechanical coupling in kerogen gas adsorption/desorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemo-mechanical%20coupling%20in%20kerogen%20gas%20adsorption/desorption&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ho,%20Tuan%20Anh&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018&rft.volume=2&rft.issue=18&rft.spage=1239&rft.epage=12395&rft.pages=1239-12395&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp01068d&rft_dat=%3Cproquest_osti_%3E2036502804%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036502804&rft_id=info:pmid/29565428&rfr_iscdi=true |