Chemo-mechanical coupling in kerogen gas adsorption/desorption

Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.2 (18), p.1239-12395
Hauptverfasser: Ho, Tuan Anh, Wang, Yifeng, Criscenti, Louise J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12395
container_issue 18
container_start_page 1239
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Ho, Tuan Anh
Wang, Yifeng
Criscenti, Louise J
description Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH 4 and CO 2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration. Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study.
doi_str_mv 10.1039/c8cp01068d
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1485833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036502804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgit8X70rViwjVpGm66UWQ-gkLetBzyCaT3a5tUpP24L83uu4KHjxl4H0YJjMIHRB8QTAtLxVXHSa44HoNbZO8oGmJeb6-qkfFFtoJYY4xJozQTbSVlaxgeca30VU1g9alLaiZtLWSTaLc0DW1nSa1Td7AuynYZCpDInVwvutrZy81LMs9tGFkE2D_591Fr3e3L9VDOn66f6yux6mKI_SpZkYZwAXRVAOUhBqqGZOETLjKNJAJU5wyqglMdGZkqXipNctNaag0Oc7oLjpZ9HWhr0VQdR8HVs5aUL0gOWec0ojOFqjz7n2A0Iu2DgqaRlpwQxAZJiNcMIxHkZ7-oXM3eBu_EBWNJuM4j-p8oZR3IXgwovN1K_2HIFh8rV5UvHr-Xv1NxEc_LYdJC3pFl7uO4HABfFCr9Pd2MT_-LxedNvQTri2TMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036502804</pqid></control><display><type>article</type><title>Chemo-mechanical coupling in kerogen gas adsorption/desorption</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ho, Tuan Anh ; Wang, Yifeng ; Criscenti, Louise J</creator><creatorcontrib>Ho, Tuan Anh ; Wang, Yifeng ; Criscenti, Louise J ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH 4 and CO 2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration. Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp01068d</identifier><identifier>PMID: 29565428</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Carbon dioxide ; Carbon sequestration ; Computer simulation ; Coupling (molecular) ; Deformation ; Gas pressure ; GEOSCIENCES ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Kerogen ; Molecular chains ; Molecular dynamics ; Molecular structure ; Natural gas ; Pore size ; Porosity ; Shale gas ; Storage capacity ; Strain ; Stress relaxation ; Surface chemistry ; Swelling</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (18), p.1239-12395</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</citedby><cites>FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</cites><orcidid>0000-0002-8129-1027 ; 0000000281291027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29565428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1485833$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Tuan Anh</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Chemo-mechanical coupling in kerogen gas adsorption/desorption</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH 4 and CO 2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration. Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Deformation</subject><subject>Gas pressure</subject><subject>GEOSCIENCES</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Kerogen</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Natural gas</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Shale gas</subject><subject>Storage capacity</subject><subject>Strain</subject><subject>Stress relaxation</subject><subject>Surface chemistry</subject><subject>Swelling</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90U1LxDAQBuAgit8X70rViwjVpGm66UWQ-gkLetBzyCaT3a5tUpP24L83uu4KHjxl4H0YJjMIHRB8QTAtLxVXHSa44HoNbZO8oGmJeb6-qkfFFtoJYY4xJozQTbSVlaxgeca30VU1g9alLaiZtLWSTaLc0DW1nSa1Td7AuynYZCpDInVwvutrZy81LMs9tGFkE2D_591Fr3e3L9VDOn66f6yux6mKI_SpZkYZwAXRVAOUhBqqGZOETLjKNJAJU5wyqglMdGZkqXipNctNaag0Oc7oLjpZ9HWhr0VQdR8HVs5aUL0gOWec0ojOFqjz7n2A0Iu2DgqaRlpwQxAZJiNcMIxHkZ7-oXM3eBu_EBWNJuM4j-p8oZR3IXgwovN1K_2HIFh8rV5UvHr-Xv1NxEc_LYdJC3pFl7uO4HABfFCr9Pd2MT_-LxedNvQTri2TMQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Ho, Tuan Anh</creator><creator>Wang, Yifeng</creator><creator>Criscenti, Louise J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8129-1027</orcidid><orcidid>https://orcid.org/0000000281291027</orcidid></search><sort><creationdate>2018</creationdate><title>Chemo-mechanical coupling in kerogen gas adsorption/desorption</title><author>Ho, Tuan Anh ; Wang, Yifeng ; Criscenti, Louise J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-d5fcfe061d3dee913f3d55a11b8c2de1b5c8353d1ebd2fa9c89dd54f9f3af4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Deformation</topic><topic>Gas pressure</topic><topic>GEOSCIENCES</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Kerogen</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Natural gas</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Shale gas</topic><topic>Storage capacity</topic><topic>Strain</topic><topic>Stress relaxation</topic><topic>Surface chemistry</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Tuan Anh</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Tuan Anh</au><au>Wang, Yifeng</au><au>Criscenti, Louise J</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemo-mechanical coupling in kerogen gas adsorption/desorption</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>18</issue><spage>1239</spage><epage>12395</epage><pages>1239-12395</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH 4 and CO 2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration. Strong chemo-mechanical coupling in kerogen gas adsorption from a hybrid Monte Carlo/molecular dynamics simulation study.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29565428</pmid><doi>10.1039/c8cp01068d</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8129-1027</orcidid><orcidid>https://orcid.org/0000000281291027</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018, Vol.2 (18), p.1239-12395
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1485833
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Carbon dioxide
Carbon sequestration
Computer simulation
Coupling (molecular)
Deformation
Gas pressure
GEOSCIENCES
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Kerogen
Molecular chains
Molecular dynamics
Molecular structure
Natural gas
Pore size
Porosity
Shale gas
Storage capacity
Strain
Stress relaxation
Surface chemistry
Swelling
title Chemo-mechanical coupling in kerogen gas adsorption/desorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemo-mechanical%20coupling%20in%20kerogen%20gas%20adsorption/desorption&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ho,%20Tuan%20Anh&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018&rft.volume=2&rft.issue=18&rft.spage=1239&rft.epage=12395&rft.pages=1239-12395&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp01068d&rft_dat=%3Cproquest_osti_%3E2036502804%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036502804&rft_id=info:pmid/29565428&rfr_iscdi=true