Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks
Achieving high catalytic performance with the lowest possible amount of platinum is critical for fuel cell cost reduction. Here we describe a method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeoli...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2018-12, Vol.362 (6420), p.1276-1281 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1281 |
---|---|
container_issue | 6420 |
container_start_page | 1276 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 362 |
creator | Chong, Lina Wen, Jianguo Kubal, Joseph Sen, Fatih G Zou, Jianxin Greeley, Jeffery Chan, Maria Barkholtz, Heather Ding, Wenjiang Liu, Di-Jia |
description | Achieving high catalytic performance with the lowest possible amount of platinum is critical for fuel cell cost reduction. Here we describe a method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeolitic imidazolate frameworks as precursors. Synergistic catalysis between strained platinum-cobalt core-shell nanoparticles over a platinum-group metal (PGM)-free catalytic substrate led to excellent fuel cell performance under 1 atmosphere of O
or air at both high-voltage and high-current domains. Two catalysts achieved oxygen reduction reaction (ORR) mass activities of 1.08 amperes per milligram of platinum (A mg
) and 1.77 A mg
and retained 64% and 15% of initial values after 30,000 voltage cycles in a fuel cell. Computational modeling reveals that the interaction between platinum-cobalt nanoparticles and PGM-free sites improves ORR activity and durability. |
doi_str_mv | 10.1126/science.aau0630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1485751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2156990880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-97df875dff8b80e06f6d6539f75bbb81ea6b634b4816d75b94d51f3593e2c49b3</originalsourceid><addsrcrecordid>eNpdkb1vFDEQxS0EIkegpkMraGg2Ga_XXrtEEV9SJBoi0Vn-GIPD7vqwvYnCX49Pd1DQzEgzv3nSm0fISwoXlA7isriIq8MLYzYQDB6RHQXFezUAe0x2AEz0EiZ-Rp6VcgvQdoo9JWcMRlAS1I58u5lrNnO67-dkfFy_d_vZ1LhuS--SNXPtwoZz53BuxVQzP5RaOo853qHvQk5LF5foze_UzrANzIL3Kf8sz8mTYOaCL079nNx8eP_16lN__eXj56t3170blai9mnyQE_chSCsBQQThBWcqTNxaKykaYQUb7Sip8G2mRs9pYM0GDk3BsnPy-qibSo26_aOi--HSuqKrmo6ST5w26O0R2uf0a8NS9RLLwZNZMW1FD5QNwyTFcEDf_Ifepi2vzUKjuFAKpIRGXR4pl1MpGYPe57iY_KAp6EMy-pSMPiXTLl6ddDe7oP_H_42C_QHEwIxP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2156990880</pqid></control><display><type>article</type><title>Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Chong, Lina ; Wen, Jianguo ; Kubal, Joseph ; Sen, Fatih G ; Zou, Jianxin ; Greeley, Jeffery ; Chan, Maria ; Barkholtz, Heather ; Ding, Wenjiang ; Liu, Di-Jia</creator><creatorcontrib>Chong, Lina ; Wen, Jianguo ; Kubal, Joseph ; Sen, Fatih G ; Zou, Jianxin ; Greeley, Jeffery ; Chan, Maria ; Barkholtz, Heather ; Ding, Wenjiang ; Liu, Di-Jia ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Achieving high catalytic performance with the lowest possible amount of platinum is critical for fuel cell cost reduction. Here we describe a method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeolitic imidazolate frameworks as precursors. Synergistic catalysis between strained platinum-cobalt core-shell nanoparticles over a platinum-group metal (PGM)-free catalytic substrate led to excellent fuel cell performance under 1 atmosphere of O
or air at both high-voltage and high-current domains. Two catalysts achieved oxygen reduction reaction (ORR) mass activities of 1.08 amperes per milligram of platinum (A mg
) and 1.77 A mg
and retained 64% and 15% of initial values after 30,000 voltage cycles in a fuel cell. Computational modeling reveals that the interaction between platinum-cobalt nanoparticles and PGM-free sites improves ORR activity and durability.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau0630</identifier><identifier>PMID: 30409809</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Atmospheric models ; Bimetals ; Catalysis ; catalyst ; Catalysts ; Chemical reduction ; Cobalt ; Computer applications ; Core-shell particles ; Domains ; Durability ; Electric potential ; Electrocatalysts ; fuel cell ; Fuel cells ; Fuel technology ; Fuels ; Heavy metals ; High voltages ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; Metal-organic frameworks ; Metals ; Nanoalloys ; Nanoparticles ; Oxygen ; Oxygen reduction reactions ; PGM-free ; Platinum ; Scientific Concepts ; Substrates ; ultralow ; Voltage ; Zinc</subject><ispartof>Science (American Association for the Advancement of Science), 2018-12, Vol.362 (6420), p.1276-1281</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-97df875dff8b80e06f6d6539f75bbb81ea6b634b4816d75b94d51f3593e2c49b3</citedby><cites>FETCH-LOGICAL-c496t-97df875dff8b80e06f6d6539f75bbb81ea6b634b4816d75b94d51f3593e2c49b3</cites><orcidid>0000-0002-3755-0044 ; 0000-0002-0545-156X ; 0000-0003-0922-1363 ; 0000-0003-1747-028X ; 0000-0002-2061-6916 ; 0000000220616916 ; 0000000309221363 ; 0000000237550044 ; 000000020545156X ; 000000031747028X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30409809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1485751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chong, Lina</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Kubal, Joseph</creatorcontrib><creatorcontrib>Sen, Fatih G</creatorcontrib><creatorcontrib>Zou, Jianxin</creatorcontrib><creatorcontrib>Greeley, Jeffery</creatorcontrib><creatorcontrib>Chan, Maria</creatorcontrib><creatorcontrib>Barkholtz, Heather</creatorcontrib><creatorcontrib>Ding, Wenjiang</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Achieving high catalytic performance with the lowest possible amount of platinum is critical for fuel cell cost reduction. Here we describe a method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeolitic imidazolate frameworks as precursors. Synergistic catalysis between strained platinum-cobalt core-shell nanoparticles over a platinum-group metal (PGM)-free catalytic substrate led to excellent fuel cell performance under 1 atmosphere of O
or air at both high-voltage and high-current domains. Two catalysts achieved oxygen reduction reaction (ORR) mass activities of 1.08 amperes per milligram of platinum (A mg
) and 1.77 A mg
and retained 64% and 15% of initial values after 30,000 voltage cycles in a fuel cell. Computational modeling reveals that the interaction between platinum-cobalt nanoparticles and PGM-free sites improves ORR activity and durability.</description><subject>Atmospheric models</subject><subject>Bimetals</subject><subject>Catalysis</subject><subject>catalyst</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Computer applications</subject><subject>Core-shell particles</subject><subject>Domains</subject><subject>Durability</subject><subject>Electric potential</subject><subject>Electrocatalysts</subject><subject>fuel cell</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Fuels</subject><subject>Heavy metals</subject><subject>High voltages</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>PGM-free</subject><subject>Platinum</subject><subject>Scientific Concepts</subject><subject>Substrates</subject><subject>ultralow</subject><subject>Voltage</subject><subject>Zinc</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkb1vFDEQxS0EIkegpkMraGg2Ga_XXrtEEV9SJBoi0Vn-GIPD7vqwvYnCX49Pd1DQzEgzv3nSm0fISwoXlA7isriIq8MLYzYQDB6RHQXFezUAe0x2AEz0EiZ-Rp6VcgvQdoo9JWcMRlAS1I58u5lrNnO67-dkfFy_d_vZ1LhuS--SNXPtwoZz53BuxVQzP5RaOo853qHvQk5LF5foze_UzrANzIL3Kf8sz8mTYOaCL079nNx8eP_16lN__eXj56t3170blai9mnyQE_chSCsBQQThBWcqTNxaKykaYQUb7Sip8G2mRs9pYM0GDk3BsnPy-qibSo26_aOi--HSuqKrmo6ST5w26O0R2uf0a8NS9RLLwZNZMW1FD5QNwyTFcEDf_Ifepi2vzUKjuFAKpIRGXR4pl1MpGYPe57iY_KAp6EMy-pSMPiXTLl6ddDe7oP_H_42C_QHEwIxP</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Chong, Lina</creator><creator>Wen, Jianguo</creator><creator>Kubal, Joseph</creator><creator>Sen, Fatih G</creator><creator>Zou, Jianxin</creator><creator>Greeley, Jeffery</creator><creator>Chan, Maria</creator><creator>Barkholtz, Heather</creator><creator>Ding, Wenjiang</creator><creator>Liu, Di-Jia</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3755-0044</orcidid><orcidid>https://orcid.org/0000-0002-0545-156X</orcidid><orcidid>https://orcid.org/0000-0003-0922-1363</orcidid><orcidid>https://orcid.org/0000-0003-1747-028X</orcidid><orcidid>https://orcid.org/0000-0002-2061-6916</orcidid><orcidid>https://orcid.org/0000000220616916</orcidid><orcidid>https://orcid.org/0000000309221363</orcidid><orcidid>https://orcid.org/0000000237550044</orcidid><orcidid>https://orcid.org/000000020545156X</orcidid><orcidid>https://orcid.org/000000031747028X</orcidid></search><sort><creationdate>20181214</creationdate><title>Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks</title><author>Chong, Lina ; Wen, Jianguo ; Kubal, Joseph ; Sen, Fatih G ; Zou, Jianxin ; Greeley, Jeffery ; Chan, Maria ; Barkholtz, Heather ; Ding, Wenjiang ; Liu, Di-Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-97df875dff8b80e06f6d6539f75bbb81ea6b634b4816d75b94d51f3593e2c49b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric models</topic><topic>Bimetals</topic><topic>Catalysis</topic><topic>catalyst</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Computer applications</topic><topic>Core-shell particles</topic><topic>Domains</topic><topic>Durability</topic><topic>Electric potential</topic><topic>Electrocatalysts</topic><topic>fuel cell</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Fuels</topic><topic>Heavy metals</topic><topic>High voltages</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>PGM-free</topic><topic>Platinum</topic><topic>Scientific Concepts</topic><topic>Substrates</topic><topic>ultralow</topic><topic>Voltage</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Lina</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Kubal, Joseph</creatorcontrib><creatorcontrib>Sen, Fatih G</creatorcontrib><creatorcontrib>Zou, Jianxin</creatorcontrib><creatorcontrib>Greeley, Jeffery</creatorcontrib><creatorcontrib>Chan, Maria</creatorcontrib><creatorcontrib>Barkholtz, Heather</creatorcontrib><creatorcontrib>Ding, Wenjiang</creatorcontrib><creatorcontrib>Liu, Di-Jia</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chong, Lina</au><au>Wen, Jianguo</au><au>Kubal, Joseph</au><au>Sen, Fatih G</au><au>Zou, Jianxin</au><au>Greeley, Jeffery</au><au>Chan, Maria</au><au>Barkholtz, Heather</au><au>Ding, Wenjiang</au><au>Liu, Di-Jia</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>362</volume><issue>6420</issue><spage>1276</spage><epage>1281</epage><pages>1276-1281</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Achieving high catalytic performance with the lowest possible amount of platinum is critical for fuel cell cost reduction. Here we describe a method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeolitic imidazolate frameworks as precursors. Synergistic catalysis between strained platinum-cobalt core-shell nanoparticles over a platinum-group metal (PGM)-free catalytic substrate led to excellent fuel cell performance under 1 atmosphere of O
or air at both high-voltage and high-current domains. Two catalysts achieved oxygen reduction reaction (ORR) mass activities of 1.08 amperes per milligram of platinum (A mg
) and 1.77 A mg
and retained 64% and 15% of initial values after 30,000 voltage cycles in a fuel cell. Computational modeling reveals that the interaction between platinum-cobalt nanoparticles and PGM-free sites improves ORR activity and durability.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30409809</pmid><doi>10.1126/science.aau0630</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3755-0044</orcidid><orcidid>https://orcid.org/0000-0002-0545-156X</orcidid><orcidid>https://orcid.org/0000-0003-0922-1363</orcidid><orcidid>https://orcid.org/0000-0003-1747-028X</orcidid><orcidid>https://orcid.org/0000-0002-2061-6916</orcidid><orcidid>https://orcid.org/0000000220616916</orcidid><orcidid>https://orcid.org/0000000309221363</orcidid><orcidid>https://orcid.org/0000000237550044</orcidid><orcidid>https://orcid.org/000000020545156X</orcidid><orcidid>https://orcid.org/000000031747028X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-12, Vol.362 (6420), p.1276-1281 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1485751 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Atmospheric models Bimetals Catalysis catalyst Catalysts Chemical reduction Cobalt Computer applications Core-shell particles Domains Durability Electric potential Electrocatalysts fuel cell Fuel cells Fuel technology Fuels Heavy metals High voltages INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE Metal-organic frameworks Metals Nanoalloys Nanoparticles Oxygen Oxygen reduction reactions PGM-free Platinum Scientific Concepts Substrates ultralow Voltage Zinc |
title | Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow-loading%20platinum-cobalt%20fuel%20cell%20catalysts%20derived%20from%20imidazolate%20frameworks&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chong,%20Lina&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-12-14&rft.volume=362&rft.issue=6420&rft.spage=1276&rft.epage=1281&rft.pages=1276-1281&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau0630&rft_dat=%3Cproquest_osti_%3E2156990880%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2156990880&rft_id=info:pmid/30409809&rfr_iscdi=true |