Simulated Microstructural and Compositional Evolution of U-Pu-Zr Alloys Using the Potts-Phase Field Modeling Technique

U-Pu-Zr alloys are considered ideal metallic fuels for experimental breeder reactors because of their superior material properties and potential for increased burnup performance. However, significant constituent redistribution has been observed in these alloys when irradiated, or subject to a therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6457-6468
Hauptverfasser: Cox, Jordan J., Homer, Eric R., Tikare, Veena, Kurata, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6468
container_issue 12
container_start_page 6457
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 49
creator Cox, Jordan J.
Homer, Eric R.
Tikare, Veena
Kurata, Masaki
description U-Pu-Zr alloys are considered ideal metallic fuels for experimental breeder reactors because of their superior material properties and potential for increased burnup performance. However, significant constituent redistribution has been observed in these alloys when irradiated, or subject to a thermal gradient, resulting in inhomogeneity of both composition and phase, which, in turn, alters the fuel performance. The hybrid Potts-phase field method is reformulated for ternary alloys in a thermal gradient and utilized to simulate and predict constituent redistribution and phase transformations in the U-Pu-Zr nuclear fuel system. Simulated evolution profiles for the U-16Pu-23Zr (at. pct) alloy show concentric zones that are compared with published experimental results; discrepancies in zone size are attributed to thermal profile differences and assumptions related to the diffusivity values used. Twenty-one alloys, over the entire ternary compositional spectrum, are also simulated to investigate the effects of alloy composition on constituent redistribution and phase transformations. The U-40Pu-20Zr (at. pct) alloy shows the most potential for compositional uniformity and phase homogeneity, throughout a thermal gradient, while remaining in the compositional range of feasible alloys.
doi_str_mv 10.1007/s11661-018-4922-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1485449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113691742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5c266d92195561a344eec412543cb71298a2dc659b0c78c89edef19ffa145b263</originalsourceid><addsrcrecordid>eNp1kV9PwyAUxRujiX8_gG9En1EupbQ8mmVTE41L3F58IYzSjaUrE-iSfXtpauKTT9zA75zcw8myWyAPQEj5GAA4B0ygwkxQisuT7AIKlmMQjJymmZQ5LjjNz7PLELaEEBA5v8gOn3bXtyqaGr1b7V2Ivtex96pFqqvRxO32LthoXZdupgfX9sOMXIOWeN7jL4-e2tYdA1oG261R3Bg0dzEGPN-oYNDMmjY5u9q0w_PC6E1nv3tznZ01qg3m5ve8ypaz6WLygt8-nl8nT29Y5xWPuNCU81pQEEXBQeWMGaMZ0BRMr0qgolK01rwQK6LLSlfC1KYB0TQKWLGiPL_K7kbfFMzKoG1MG2jXdUZHCawqGBMJuh-hvXdptxDl1vU-BQ6SAuRcQMloomCkhl8K3jRy7-1O-aMEIocO5NiBTB3IoQNZJg0dNSGx3dr4P-f_RT_MiYmV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113691742</pqid></control><display><type>article</type><title>Simulated Microstructural and Compositional Evolution of U-Pu-Zr Alloys Using the Potts-Phase Field Modeling Technique</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cox, Jordan J. ; Homer, Eric R. ; Tikare, Veena ; Kurata, Masaki</creator><creatorcontrib>Cox, Jordan J. ; Homer, Eric R. ; Tikare, Veena ; Kurata, Masaki ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>U-Pu-Zr alloys are considered ideal metallic fuels for experimental breeder reactors because of their superior material properties and potential for increased burnup performance. However, significant constituent redistribution has been observed in these alloys when irradiated, or subject to a thermal gradient, resulting in inhomogeneity of both composition and phase, which, in turn, alters the fuel performance. The hybrid Potts-phase field method is reformulated for ternary alloys in a thermal gradient and utilized to simulate and predict constituent redistribution and phase transformations in the U-Pu-Zr nuclear fuel system. Simulated evolution profiles for the U-16Pu-23Zr (at. pct) alloy show concentric zones that are compared with published experimental results; discrepancies in zone size are attributed to thermal profile differences and assumptions related to the diffusivity values used. Twenty-one alloys, over the entire ternary compositional spectrum, are also simulated to investigate the effects of alloy composition on constituent redistribution and phase transformations. The U-40Pu-20Zr (at. pct) alloy shows the most potential for compositional uniformity and phase homogeneity, throughout a thermal gradient, while remaining in the compositional range of feasible alloys.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-018-4922-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Breeder reactors ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composition effects ; Computer simulation ; Fuel systems ; Inhomogeneity ; Material properties ; MATERIALS SCIENCE ; Metallic Materials ; Metallurgical constituents ; Microstructure ; Nanotechnology ; Nuclear fuels ; Nuclear reactors ; Phase transitions ; Plutonium ; Simulated evolution ; Structural Materials ; Surfaces and Interfaces ; Temperature ; Ternary alloys ; Thin Films ; Uranium base alloys ; Zirconium</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6457-6468</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5c266d92195561a344eec412543cb71298a2dc659b0c78c89edef19ffa145b263</citedby><cites>FETCH-LOGICAL-c386t-5c266d92195561a344eec412543cb71298a2dc659b0c78c89edef19ffa145b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-018-4922-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-018-4922-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1485449$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cox, Jordan J.</creatorcontrib><creatorcontrib>Homer, Eric R.</creatorcontrib><creatorcontrib>Tikare, Veena</creatorcontrib><creatorcontrib>Kurata, Masaki</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Simulated Microstructural and Compositional Evolution of U-Pu-Zr Alloys Using the Potts-Phase Field Modeling Technique</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>U-Pu-Zr alloys are considered ideal metallic fuels for experimental breeder reactors because of their superior material properties and potential for increased burnup performance. However, significant constituent redistribution has been observed in these alloys when irradiated, or subject to a thermal gradient, resulting in inhomogeneity of both composition and phase, which, in turn, alters the fuel performance. The hybrid Potts-phase field method is reformulated for ternary alloys in a thermal gradient and utilized to simulate and predict constituent redistribution and phase transformations in the U-Pu-Zr nuclear fuel system. Simulated evolution profiles for the U-16Pu-23Zr (at. pct) alloy show concentric zones that are compared with published experimental results; discrepancies in zone size are attributed to thermal profile differences and assumptions related to the diffusivity values used. Twenty-one alloys, over the entire ternary compositional spectrum, are also simulated to investigate the effects of alloy composition on constituent redistribution and phase transformations. The U-40Pu-20Zr (at. pct) alloy shows the most potential for compositional uniformity and phase homogeneity, throughout a thermal gradient, while remaining in the compositional range of feasible alloys.</description><subject>Alloys</subject><subject>Breeder reactors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composition effects</subject><subject>Computer simulation</subject><subject>Fuel systems</subject><subject>Inhomogeneity</subject><subject>Material properties</subject><subject>MATERIALS SCIENCE</subject><subject>Metallic Materials</subject><subject>Metallurgical constituents</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Nuclear fuels</subject><subject>Nuclear reactors</subject><subject>Phase transitions</subject><subject>Plutonium</subject><subject>Simulated evolution</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Ternary alloys</subject><subject>Thin Films</subject><subject>Uranium base alloys</subject><subject>Zirconium</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV9PwyAUxRujiX8_gG9En1EupbQ8mmVTE41L3F58IYzSjaUrE-iSfXtpauKTT9zA75zcw8myWyAPQEj5GAA4B0ygwkxQisuT7AIKlmMQjJymmZQ5LjjNz7PLELaEEBA5v8gOn3bXtyqaGr1b7V2Ivtex96pFqqvRxO32LthoXZdupgfX9sOMXIOWeN7jL4-e2tYdA1oG261R3Bg0dzEGPN-oYNDMmjY5u9q0w_PC6E1nv3tznZ01qg3m5ve8ypaz6WLygt8-nl8nT29Y5xWPuNCU81pQEEXBQeWMGaMZ0BRMr0qgolK01rwQK6LLSlfC1KYB0TQKWLGiPL_K7kbfFMzKoG1MG2jXdUZHCawqGBMJuh-hvXdptxDl1vU-BQ6SAuRcQMloomCkhl8K3jRy7-1O-aMEIocO5NiBTB3IoQNZJg0dNSGx3dr4P-f_RT_MiYmV</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Cox, Jordan J.</creator><creator>Homer, Eric R.</creator><creator>Tikare, Veena</creator><creator>Kurata, Masaki</creator><general>Springer US</general><general>Springer Nature B.V</general><general>ASM International</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20181201</creationdate><title>Simulated Microstructural and Compositional Evolution of U-Pu-Zr Alloys Using the Potts-Phase Field Modeling Technique</title><author>Cox, Jordan J. ; Homer, Eric R. ; Tikare, Veena ; Kurata, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5c266d92195561a344eec412543cb71298a2dc659b0c78c89edef19ffa145b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Breeder reactors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composition effects</topic><topic>Computer simulation</topic><topic>Fuel systems</topic><topic>Inhomogeneity</topic><topic>Material properties</topic><topic>MATERIALS SCIENCE</topic><topic>Metallic Materials</topic><topic>Metallurgical constituents</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Nuclear fuels</topic><topic>Nuclear reactors</topic><topic>Phase transitions</topic><topic>Plutonium</topic><topic>Simulated evolution</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Ternary alloys</topic><topic>Thin Films</topic><topic>Uranium base alloys</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, Jordan J.</creatorcontrib><creatorcontrib>Homer, Eric R.</creatorcontrib><creatorcontrib>Tikare, Veena</creatorcontrib><creatorcontrib>Kurata, Masaki</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, Jordan J.</au><au>Homer, Eric R.</au><au>Tikare, Veena</au><au>Kurata, Masaki</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated Microstructural and Compositional Evolution of U-Pu-Zr Alloys Using the Potts-Phase Field Modeling Technique</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>49</volume><issue>12</issue><spage>6457</spage><epage>6468</epage><pages>6457-6468</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>U-Pu-Zr alloys are considered ideal metallic fuels for experimental breeder reactors because of their superior material properties and potential for increased burnup performance. However, significant constituent redistribution has been observed in these alloys when irradiated, or subject to a thermal gradient, resulting in inhomogeneity of both composition and phase, which, in turn, alters the fuel performance. The hybrid Potts-phase field method is reformulated for ternary alloys in a thermal gradient and utilized to simulate and predict constituent redistribution and phase transformations in the U-Pu-Zr nuclear fuel system. Simulated evolution profiles for the U-16Pu-23Zr (at. pct) alloy show concentric zones that are compared with published experimental results; discrepancies in zone size are attributed to thermal profile differences and assumptions related to the diffusivity values used. Twenty-one alloys, over the entire ternary compositional spectrum, are also simulated to investigate the effects of alloy composition on constituent redistribution and phase transformations. The U-40Pu-20Zr (at. pct) alloy shows the most potential for compositional uniformity and phase homogeneity, throughout a thermal gradient, while remaining in the compositional range of feasible alloys.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-018-4922-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6457-6468
issn 1073-5623
1543-1940
language eng
recordid cdi_osti_scitechconnect_1485449
source SpringerLink Journals - AutoHoldings
subjects Alloys
Breeder reactors
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composition effects
Computer simulation
Fuel systems
Inhomogeneity
Material properties
MATERIALS SCIENCE
Metallic Materials
Metallurgical constituents
Microstructure
Nanotechnology
Nuclear fuels
Nuclear reactors
Phase transitions
Plutonium
Simulated evolution
Structural Materials
Surfaces and Interfaces
Temperature
Ternary alloys
Thin Films
Uranium base alloys
Zirconium
title Simulated Microstructural and Compositional Evolution of U-Pu-Zr Alloys Using the Potts-Phase Field Modeling Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20Microstructural%20and%20Compositional%20Evolution%20of%20U-Pu-Zr%20Alloys%20Using%20the%20Potts-Phase%20Field%20Modeling%20Technique&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Cox,%20Jordan%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-12-01&rft.volume=49&rft.issue=12&rft.spage=6457&rft.epage=6468&rft.pages=6457-6468&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-018-4922-7&rft_dat=%3Cproquest_osti_%3E2113691742%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2113691742&rft_id=info:pmid/&rfr_iscdi=true