Phase transition lowering in dynamically compressed silicon

Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2019-01, Vol.15 (1), p.89-94
Hauptverfasser: McBride, E. E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., Lee, H. J., Liermann, H.-P., Nagler, B., Pelka, A., Rödel, M., Schropp, A., Smith, R. F., Spindloe, C., Swift, D., Tavella, F., Toleikis, S., Tschentscher, T., Wark, J. S., Higginbotham, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 89
container_title Nature physics
container_volume 15
creator McBride, E. E.
Krygier, A.
Ehnes, A.
Galtier, E.
Harmand, M.
Konôpková, Z.
Lee, H. J.
Liermann, H.-P.
Nagler, B.
Pelka, A.
Rödel, M.
Schropp, A.
Smith, R. F.
Spindloe, C.
Swift, D.
Tavella, F.
Toleikis, S.
Tschentscher, T.
Wark, J. S.
Higginbotham, A.
description Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures. In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system.
doi_str_mv 10.1038/s41567-018-0290-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1483786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162764037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGwRbEiBs-PYjpiqCihSJRhgtlzHoa5SO9gptG-Pq6AyMd0N3_-f7kPoEsMthkLcRYpLxnPAIgdSQb49QiPMaZkTKvDxYefFKTqLcQVACcPFCN2_LlU0WR-Ui7a33mWt_zbBuo_MuqzeObW2WrXtLtN-3QUTo6mzaFurvTtHJ41qo7n4nWP0_vjwNp3l85en5-lknmsqeJ-zpqwrU2rKF7jkC1NVHEhRESW4oBWhhpWMgTB0AbrBnJOKcAalKbioMQVVjNHV0Otjb2XUtjd6me47o3uJqUggS9DNAC1VK7tg1yrspFdWziZzaV3cSCCEAxPwhRN8PcBd8J8bE3u58pvg0hOSYJbOUyh4ovBA6eBjDKY59GKQe-tysC6Tdbm3LrcpQ4ZM7PYSTfhr_j_0A-JggpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162764037</pqid></control><display><type>article</type><title>Phase transition lowering in dynamically compressed silicon</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>McBride, E. E. ; Krygier, A. ; Ehnes, A. ; Galtier, E. ; Harmand, M. ; Konôpková, Z. ; Lee, H. J. ; Liermann, H.-P. ; Nagler, B. ; Pelka, A. ; Rödel, M. ; Schropp, A. ; Smith, R. F. ; Spindloe, C. ; Swift, D. ; Tavella, F. ; Toleikis, S. ; Tschentscher, T. ; Wark, J. S. ; Higginbotham, A.</creator><creatorcontrib>McBride, E. E. ; Krygier, A. ; Ehnes, A. ; Galtier, E. ; Harmand, M. ; Konôpková, Z. ; Lee, H. J. ; Liermann, H.-P. ; Nagler, B. ; Pelka, A. ; Rödel, M. ; Schropp, A. ; Smith, R. F. ; Spindloe, C. ; Swift, D. ; Tavella, F. ; Toleikis, S. ; Tschentscher, T. ; Wark, J. S. ; Higginbotham, A. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><description>Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures. In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/s41567-018-0290-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/119/1002 ; 639/766/119/2795 ; Atomic ; Boundary element method ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter ; Condensed Matter Physics ; Crystals ; Free electron lasers ; Laser applications ; MATERIALS SCIENCE ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Silicon ; Solid phases ; Theoretical ; X-ray diffraction</subject><ispartof>Nature physics, 2019-01, Vol.15 (1), p.89-94</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</citedby><cites>FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</cites><orcidid>0000-0001-5039-1183 ; 0000-0003-0713-5824 ; 0000-0002-8821-6126 ; 0000-0002-6648-7400 ; 0000000150391183 ; 0000000307135824 ; 0000000288216126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02270680$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1483786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McBride, E. E.</creatorcontrib><creatorcontrib>Krygier, A.</creatorcontrib><creatorcontrib>Ehnes, A.</creatorcontrib><creatorcontrib>Galtier, E.</creatorcontrib><creatorcontrib>Harmand, M.</creatorcontrib><creatorcontrib>Konôpková, Z.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Liermann, H.-P.</creatorcontrib><creatorcontrib>Nagler, B.</creatorcontrib><creatorcontrib>Pelka, A.</creatorcontrib><creatorcontrib>Rödel, M.</creatorcontrib><creatorcontrib>Schropp, A.</creatorcontrib><creatorcontrib>Smith, R. F.</creatorcontrib><creatorcontrib>Spindloe, C.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><creatorcontrib>Tavella, F.</creatorcontrib><creatorcontrib>Toleikis, S.</creatorcontrib><creatorcontrib>Tschentscher, T.</creatorcontrib><creatorcontrib>Wark, J. S.</creatorcontrib><creatorcontrib>Higginbotham, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><title>Phase transition lowering in dynamically compressed silicon</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures. In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system.</description><subject>639/766/119</subject><subject>639/766/119/1002</subject><subject>639/766/119/2795</subject><subject>Atomic</subject><subject>Boundary element method</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Free electron lasers</subject><subject>Laser applications</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Silicon</subject><subject>Solid phases</subject><subject>Theoretical</subject><subject>X-ray diffraction</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGwRbEiBs-PYjpiqCihSJRhgtlzHoa5SO9gptG-Pq6AyMd0N3_-f7kPoEsMthkLcRYpLxnPAIgdSQb49QiPMaZkTKvDxYefFKTqLcQVACcPFCN2_LlU0WR-Ui7a33mWt_zbBuo_MuqzeObW2WrXtLtN-3QUTo6mzaFurvTtHJ41qo7n4nWP0_vjwNp3l85en5-lknmsqeJ-zpqwrU2rKF7jkC1NVHEhRESW4oBWhhpWMgTB0AbrBnJOKcAalKbioMQVVjNHV0Otjb2XUtjd6me47o3uJqUggS9DNAC1VK7tg1yrspFdWziZzaV3cSCCEAxPwhRN8PcBd8J8bE3u58pvg0hOSYJbOUyh4ovBA6eBjDKY59GKQe-tysC6Tdbm3LrcpQ4ZM7PYSTfhr_j_0A-JggpU</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>McBride, E. E.</creator><creator>Krygier, A.</creator><creator>Ehnes, A.</creator><creator>Galtier, E.</creator><creator>Harmand, M.</creator><creator>Konôpková, Z.</creator><creator>Lee, H. J.</creator><creator>Liermann, H.-P.</creator><creator>Nagler, B.</creator><creator>Pelka, A.</creator><creator>Rödel, M.</creator><creator>Schropp, A.</creator><creator>Smith, R. F.</creator><creator>Spindloe, C.</creator><creator>Swift, D.</creator><creator>Tavella, F.</creator><creator>Toleikis, S.</creator><creator>Tschentscher, T.</creator><creator>Wark, J. S.</creator><creator>Higginbotham, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5039-1183</orcidid><orcidid>https://orcid.org/0000-0003-0713-5824</orcidid><orcidid>https://orcid.org/0000-0002-8821-6126</orcidid><orcidid>https://orcid.org/0000-0002-6648-7400</orcidid><orcidid>https://orcid.org/0000000150391183</orcidid><orcidid>https://orcid.org/0000000307135824</orcidid><orcidid>https://orcid.org/0000000288216126</orcidid></search><sort><creationdate>20190101</creationdate><title>Phase transition lowering in dynamically compressed silicon</title><author>McBride, E. E. ; Krygier, A. ; Ehnes, A. ; Galtier, E. ; Harmand, M. ; Konôpková, Z. ; Lee, H. J. ; Liermann, H.-P. ; Nagler, B. ; Pelka, A. ; Rödel, M. ; Schropp, A. ; Smith, R. F. ; Spindloe, C. ; Swift, D. ; Tavella, F. ; Toleikis, S. ; Tschentscher, T. ; Wark, J. S. ; Higginbotham, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/119</topic><topic>639/766/119/1002</topic><topic>639/766/119/2795</topic><topic>Atomic</topic><topic>Boundary element method</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Free electron lasers</topic><topic>Laser applications</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Silicon</topic><topic>Solid phases</topic><topic>Theoretical</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBride, E. E.</creatorcontrib><creatorcontrib>Krygier, A.</creatorcontrib><creatorcontrib>Ehnes, A.</creatorcontrib><creatorcontrib>Galtier, E.</creatorcontrib><creatorcontrib>Harmand, M.</creatorcontrib><creatorcontrib>Konôpková, Z.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Liermann, H.-P.</creatorcontrib><creatorcontrib>Nagler, B.</creatorcontrib><creatorcontrib>Pelka, A.</creatorcontrib><creatorcontrib>Rödel, M.</creatorcontrib><creatorcontrib>Schropp, A.</creatorcontrib><creatorcontrib>Smith, R. F.</creatorcontrib><creatorcontrib>Spindloe, C.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><creatorcontrib>Tavella, F.</creatorcontrib><creatorcontrib>Toleikis, S.</creatorcontrib><creatorcontrib>Tschentscher, T.</creatorcontrib><creatorcontrib>Wark, J. S.</creatorcontrib><creatorcontrib>Higginbotham, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBride, E. E.</au><au>Krygier, A.</au><au>Ehnes, A.</au><au>Galtier, E.</au><au>Harmand, M.</au><au>Konôpková, Z.</au><au>Lee, H. J.</au><au>Liermann, H.-P.</au><au>Nagler, B.</au><au>Pelka, A.</au><au>Rödel, M.</au><au>Schropp, A.</au><au>Smith, R. F.</au><au>Spindloe, C.</au><au>Swift, D.</au><au>Tavella, F.</au><au>Toleikis, S.</au><au>Tschentscher, T.</au><au>Wark, J. S.</au><au>Higginbotham, A.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transition lowering in dynamically compressed silicon</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures. In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0290-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5039-1183</orcidid><orcidid>https://orcid.org/0000-0003-0713-5824</orcidid><orcidid>https://orcid.org/0000-0002-8821-6126</orcidid><orcidid>https://orcid.org/0000-0002-6648-7400</orcidid><orcidid>https://orcid.org/0000000150391183</orcidid><orcidid>https://orcid.org/0000000307135824</orcidid><orcidid>https://orcid.org/0000000288216126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2019-01, Vol.15 (1), p.89-94
issn 1745-2473
1745-2481
1476-4636
language eng
recordid cdi_osti_scitechconnect_1483786
source Nature; Alma/SFX Local Collection
subjects 639/766/119
639/766/119/1002
639/766/119/2795
Atomic
Boundary element method
Classical and Continuum Physics
Complex Systems
Condensed Matter
Condensed Matter Physics
Crystals
Free electron lasers
Laser applications
MATERIALS SCIENCE
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Phase transitions
Physics
Physics and Astronomy
Silicon
Solid phases
Theoretical
X-ray diffraction
title Phase transition lowering in dynamically compressed silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transition%20lowering%20in%20dynamically%20compressed%20silicon&rft.jtitle=Nature%20physics&rft.au=McBride,%20E.%20E.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-01-01&rft.volume=15&rft.issue=1&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0290-x&rft_dat=%3Cproquest_osti_%3E2162764037%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162764037&rft_id=info:pmid/&rfr_iscdi=true