Phase transition lowering in dynamically compressed silicon
Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the c...
Gespeichert in:
Veröffentlicht in: | Nature physics 2019-01, Vol.15 (1), p.89-94 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Nature physics |
container_volume | 15 |
creator | McBride, E. E. Krygier, A. Ehnes, A. Galtier, E. Harmand, M. Konôpková, Z. Lee, H. J. Liermann, H.-P. Nagler, B. Pelka, A. Rödel, M. Schropp, A. Smith, R. F. Spindloe, C. Swift, D. Tavella, F. Toleikis, S. Tschentscher, T. Wark, J. S. Higginbotham, A. |
description | Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.
In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system. |
doi_str_mv | 10.1038/s41567-018-0290-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1483786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162764037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGwRbEiBs-PYjpiqCihSJRhgtlzHoa5SO9gptG-Pq6AyMd0N3_-f7kPoEsMthkLcRYpLxnPAIgdSQb49QiPMaZkTKvDxYefFKTqLcQVACcPFCN2_LlU0WR-Ui7a33mWt_zbBuo_MuqzeObW2WrXtLtN-3QUTo6mzaFurvTtHJ41qo7n4nWP0_vjwNp3l85en5-lknmsqeJ-zpqwrU2rKF7jkC1NVHEhRESW4oBWhhpWMgTB0AbrBnJOKcAalKbioMQVVjNHV0Otjb2XUtjd6me47o3uJqUggS9DNAC1VK7tg1yrspFdWziZzaV3cSCCEAxPwhRN8PcBd8J8bE3u58pvg0hOSYJbOUyh4ovBA6eBjDKY59GKQe-tysC6Tdbm3LrcpQ4ZM7PYSTfhr_j_0A-JggpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162764037</pqid></control><display><type>article</type><title>Phase transition lowering in dynamically compressed silicon</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>McBride, E. E. ; Krygier, A. ; Ehnes, A. ; Galtier, E. ; Harmand, M. ; Konôpková, Z. ; Lee, H. J. ; Liermann, H.-P. ; Nagler, B. ; Pelka, A. ; Rödel, M. ; Schropp, A. ; Smith, R. F. ; Spindloe, C. ; Swift, D. ; Tavella, F. ; Toleikis, S. ; Tschentscher, T. ; Wark, J. S. ; Higginbotham, A.</creator><creatorcontrib>McBride, E. E. ; Krygier, A. ; Ehnes, A. ; Galtier, E. ; Harmand, M. ; Konôpková, Z. ; Lee, H. J. ; Liermann, H.-P. ; Nagler, B. ; Pelka, A. ; Rödel, M. ; Schropp, A. ; Smith, R. F. ; Spindloe, C. ; Swift, D. ; Tavella, F. ; Toleikis, S. ; Tschentscher, T. ; Wark, J. S. ; Higginbotham, A. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><description>Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.
In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/s41567-018-0290-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/119/1002 ; 639/766/119/2795 ; Atomic ; Boundary element method ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter ; Condensed Matter Physics ; Crystals ; Free electron lasers ; Laser applications ; MATERIALS SCIENCE ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Silicon ; Solid phases ; Theoretical ; X-ray diffraction</subject><ispartof>Nature physics, 2019-01, Vol.15 (1), p.89-94</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</citedby><cites>FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</cites><orcidid>0000-0001-5039-1183 ; 0000-0003-0713-5824 ; 0000-0002-8821-6126 ; 0000-0002-6648-7400 ; 0000000150391183 ; 0000000307135824 ; 0000000288216126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02270680$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1483786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McBride, E. E.</creatorcontrib><creatorcontrib>Krygier, A.</creatorcontrib><creatorcontrib>Ehnes, A.</creatorcontrib><creatorcontrib>Galtier, E.</creatorcontrib><creatorcontrib>Harmand, M.</creatorcontrib><creatorcontrib>Konôpková, Z.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Liermann, H.-P.</creatorcontrib><creatorcontrib>Nagler, B.</creatorcontrib><creatorcontrib>Pelka, A.</creatorcontrib><creatorcontrib>Rödel, M.</creatorcontrib><creatorcontrib>Schropp, A.</creatorcontrib><creatorcontrib>Smith, R. F.</creatorcontrib><creatorcontrib>Spindloe, C.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><creatorcontrib>Tavella, F.</creatorcontrib><creatorcontrib>Toleikis, S.</creatorcontrib><creatorcontrib>Tschentscher, T.</creatorcontrib><creatorcontrib>Wark, J. S.</creatorcontrib><creatorcontrib>Higginbotham, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><title>Phase transition lowering in dynamically compressed silicon</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.
In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system.</description><subject>639/766/119</subject><subject>639/766/119/1002</subject><subject>639/766/119/2795</subject><subject>Atomic</subject><subject>Boundary element method</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Free electron lasers</subject><subject>Laser applications</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Silicon</subject><subject>Solid phases</subject><subject>Theoretical</subject><subject>X-ray diffraction</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGwRbEiBs-PYjpiqCihSJRhgtlzHoa5SO9gptG-Pq6AyMd0N3_-f7kPoEsMthkLcRYpLxnPAIgdSQb49QiPMaZkTKvDxYefFKTqLcQVACcPFCN2_LlU0WR-Ui7a33mWt_zbBuo_MuqzeObW2WrXtLtN-3QUTo6mzaFurvTtHJ41qo7n4nWP0_vjwNp3l85en5-lknmsqeJ-zpqwrU2rKF7jkC1NVHEhRESW4oBWhhpWMgTB0AbrBnJOKcAalKbioMQVVjNHV0Otjb2XUtjd6me47o3uJqUggS9DNAC1VK7tg1yrspFdWziZzaV3cSCCEAxPwhRN8PcBd8J8bE3u58pvg0hOSYJbOUyh4ovBA6eBjDKY59GKQe-tysC6Tdbm3LrcpQ4ZM7PYSTfhr_j_0A-JggpU</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>McBride, E. E.</creator><creator>Krygier, A.</creator><creator>Ehnes, A.</creator><creator>Galtier, E.</creator><creator>Harmand, M.</creator><creator>Konôpková, Z.</creator><creator>Lee, H. J.</creator><creator>Liermann, H.-P.</creator><creator>Nagler, B.</creator><creator>Pelka, A.</creator><creator>Rödel, M.</creator><creator>Schropp, A.</creator><creator>Smith, R. F.</creator><creator>Spindloe, C.</creator><creator>Swift, D.</creator><creator>Tavella, F.</creator><creator>Toleikis, S.</creator><creator>Tschentscher, T.</creator><creator>Wark, J. S.</creator><creator>Higginbotham, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5039-1183</orcidid><orcidid>https://orcid.org/0000-0003-0713-5824</orcidid><orcidid>https://orcid.org/0000-0002-8821-6126</orcidid><orcidid>https://orcid.org/0000-0002-6648-7400</orcidid><orcidid>https://orcid.org/0000000150391183</orcidid><orcidid>https://orcid.org/0000000307135824</orcidid><orcidid>https://orcid.org/0000000288216126</orcidid></search><sort><creationdate>20190101</creationdate><title>Phase transition lowering in dynamically compressed silicon</title><author>McBride, E. E. ; Krygier, A. ; Ehnes, A. ; Galtier, E. ; Harmand, M. ; Konôpková, Z. ; Lee, H. J. ; Liermann, H.-P. ; Nagler, B. ; Pelka, A. ; Rödel, M. ; Schropp, A. ; Smith, R. F. ; Spindloe, C. ; Swift, D. ; Tavella, F. ; Toleikis, S. ; Tschentscher, T. ; Wark, J. S. ; Higginbotham, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6f5d9e5c47b157be99702392a8784924e656608e4b0cf1772927605e378d140a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/119</topic><topic>639/766/119/1002</topic><topic>639/766/119/2795</topic><topic>Atomic</topic><topic>Boundary element method</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Free electron lasers</topic><topic>Laser applications</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Silicon</topic><topic>Solid phases</topic><topic>Theoretical</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBride, E. E.</creatorcontrib><creatorcontrib>Krygier, A.</creatorcontrib><creatorcontrib>Ehnes, A.</creatorcontrib><creatorcontrib>Galtier, E.</creatorcontrib><creatorcontrib>Harmand, M.</creatorcontrib><creatorcontrib>Konôpková, Z.</creatorcontrib><creatorcontrib>Lee, H. J.</creatorcontrib><creatorcontrib>Liermann, H.-P.</creatorcontrib><creatorcontrib>Nagler, B.</creatorcontrib><creatorcontrib>Pelka, A.</creatorcontrib><creatorcontrib>Rödel, M.</creatorcontrib><creatorcontrib>Schropp, A.</creatorcontrib><creatorcontrib>Smith, R. F.</creatorcontrib><creatorcontrib>Spindloe, C.</creatorcontrib><creatorcontrib>Swift, D.</creatorcontrib><creatorcontrib>Tavella, F.</creatorcontrib><creatorcontrib>Toleikis, S.</creatorcontrib><creatorcontrib>Tschentscher, T.</creatorcontrib><creatorcontrib>Wark, J. S.</creatorcontrib><creatorcontrib>Higginbotham, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBride, E. E.</au><au>Krygier, A.</au><au>Ehnes, A.</au><au>Galtier, E.</au><au>Harmand, M.</au><au>Konôpková, Z.</au><au>Lee, H. J.</au><au>Liermann, H.-P.</au><au>Nagler, B.</au><au>Pelka, A.</au><au>Rödel, M.</au><au>Schropp, A.</au><au>Smith, R. F.</au><au>Spindloe, C.</au><au>Swift, D.</au><au>Tavella, F.</au><au>Toleikis, S.</au><au>Tschentscher, T.</au><au>Wark, J. S.</au><au>Higginbotham, A.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transition lowering in dynamically compressed silicon</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.
In spite of its wide technological use, the response of silicon to rapid compression remains poorly understood. By means of an X-ray diffraction method based on a free-electron laser, the process for laser-driven dynamic shock compression is now elucidated in this system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0290-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5039-1183</orcidid><orcidid>https://orcid.org/0000-0003-0713-5824</orcidid><orcidid>https://orcid.org/0000-0002-8821-6126</orcidid><orcidid>https://orcid.org/0000-0002-6648-7400</orcidid><orcidid>https://orcid.org/0000000150391183</orcidid><orcidid>https://orcid.org/0000000307135824</orcidid><orcidid>https://orcid.org/0000000288216126</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2019-01, Vol.15 (1), p.89-94 |
issn | 1745-2473 1745-2481 1476-4636 |
language | eng |
recordid | cdi_osti_scitechconnect_1483786 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/766/119 639/766/119/1002 639/766/119/2795 Atomic Boundary element method Classical and Continuum Physics Complex Systems Condensed Matter Condensed Matter Physics Crystals Free electron lasers Laser applications MATERIALS SCIENCE Mathematical and Computational Physics Molecular Optical and Plasma Physics Phase transitions Physics Physics and Astronomy Silicon Solid phases Theoretical X-ray diffraction |
title | Phase transition lowering in dynamically compressed silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transition%20lowering%20in%20dynamically%20compressed%20silicon&rft.jtitle=Nature%20physics&rft.au=McBride,%20E.%20E.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-01-01&rft.volume=15&rft.issue=1&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0290-x&rft_dat=%3Cproquest_osti_%3E2162764037%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162764037&rft_id=info:pmid/&rfr_iscdi=true |