Silicon Oxide‐Rich Diamond‐Like Carbon: A Conformal, Ultrasmooth Thin Film Material with High Thermo‐Oxidative Stability

Abstract Silicon oxide‐containing diamond‐like carbon (a‐C:H:Si:O) films are a promising class of protective coatings for environmentally‐demanding applications owing to their lower residual stresses and superior thermal stability and oxidation resistance relative to undoped diamond‐like carbon. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2018-11, Vol.6 (2)
Hauptverfasser: Mangolini, Filippo, McClimon, J. Brandon, Segersten, Justin, Hilbert, James, Heaney, Patrick, Lukes, Jennifer R., Carpick, Robert W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Advanced materials interfaces
container_volume 6
creator Mangolini, Filippo
McClimon, J. Brandon
Segersten, Justin
Hilbert, James
Heaney, Patrick
Lukes, Jennifer R.
Carpick, Robert W.
description Abstract Silicon oxide‐containing diamond‐like carbon (a‐C:H:Si:O) films are a promising class of protective coatings for environmentally‐demanding applications owing to their lower residual stresses and superior thermal stability and oxidation resistance relative to undoped diamond‐like carbon. However, existing versions of a‐C:H:Si:O deposited by traditional methods such as plasma‐enhanced chemical vapor deposition (PECVD) undergo substantial degradation and oxidation at temperatures above 250 °C. This, together with the difficulty of PECVD in depositing conformal coatings on complex geometries such as high‐aspect‐ratio features, has limited the applicability of a‐C:H:Si:O. Here, the unique capabilities of plasma immersion ion implantation and deposition (PIIID) to grow silicon oxide‐rich diamond‐like carbon materials that are ultrasmooth, continuous, and conformal on high‐aspect‐ratio topographies are explored. The high concentration of silicon and oxygen in PIIID‐grown films (23 ± 5 at.% and 11 ± 4 at.%, respectively) is unrivalled for this class of materials, and drastically increases the resistance to oxidation at high temperatures, compared with PECVD‐grown films. The results open the path for using a‐C:H:Si:O in applications involving exposure of materials to extreme environments.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1483734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1483734</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14837343</originalsourceid><addsrcrecordid>eNqNTstOQjEQbYwmEOUfJqwlub0FAXfmKmEhMRFYk6EU7mjbSdqJj43xE_xGv8SSuHDpas4r58yJ6tZ6ejUYm1F1-gd3VC_np6qqtK51PTFd9bEkT5YjPLzRzn1_fj2SbeGWMHDcFXpPzw4aTFuO13ADDcc9p4D-EtZeEubALC2sWoowIx9ggeISoYdXKvqcDkfTpcCl6ziBQi8OloLbsivvF-psjz673u89V_3Z3aqZDzgLbbIlcbYt70VnZaOHEzM2Q_Ov0A_cE1PH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Silicon Oxide‐Rich Diamond‐Like Carbon: A Conformal, Ultrasmooth Thin Film Material with High Thermo‐Oxidative Stability</title><source>Access via Wiley Online Library</source><creator>Mangolini, Filippo ; McClimon, J. Brandon ; Segersten, Justin ; Hilbert, James ; Heaney, Patrick ; Lukes, Jennifer R. ; Carpick, Robert W.</creator><creatorcontrib>Mangolini, Filippo ; McClimon, J. Brandon ; Segersten, Justin ; Hilbert, James ; Heaney, Patrick ; Lukes, Jennifer R. ; Carpick, Robert W.</creatorcontrib><description>Abstract Silicon oxide‐containing diamond‐like carbon (a‐C:H:Si:O) films are a promising class of protective coatings for environmentally‐demanding applications owing to their lower residual stresses and superior thermal stability and oxidation resistance relative to undoped diamond‐like carbon. However, existing versions of a‐C:H:Si:O deposited by traditional methods such as plasma‐enhanced chemical vapor deposition (PECVD) undergo substantial degradation and oxidation at temperatures above 250 °C. This, together with the difficulty of PECVD in depositing conformal coatings on complex geometries such as high‐aspect‐ratio features, has limited the applicability of a‐C:H:Si:O. Here, the unique capabilities of plasma immersion ion implantation and deposition (PIIID) to grow silicon oxide‐rich diamond‐like carbon materials that are ultrasmooth, continuous, and conformal on high‐aspect‐ratio topographies are explored. The high concentration of silicon and oxygen in PIIID‐grown films (23 ± 5 at.% and 11 ± 4 at.%, respectively) is unrivalled for this class of materials, and drastically increases the resistance to oxidation at high temperatures, compared with PECVD‐grown films. The results open the path for using a‐C:H:Si:O in applications involving exposure of materials to extreme environments.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley &amp; Sons)</publisher><ispartof>Advanced materials interfaces, 2018-11, Vol.6 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000333609122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1483734$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>McClimon, J. Brandon</creatorcontrib><creatorcontrib>Segersten, Justin</creatorcontrib><creatorcontrib>Hilbert, James</creatorcontrib><creatorcontrib>Heaney, Patrick</creatorcontrib><creatorcontrib>Lukes, Jennifer R.</creatorcontrib><creatorcontrib>Carpick, Robert W.</creatorcontrib><title>Silicon Oxide‐Rich Diamond‐Like Carbon: A Conformal, Ultrasmooth Thin Film Material with High Thermo‐Oxidative Stability</title><title>Advanced materials interfaces</title><description>Abstract Silicon oxide‐containing diamond‐like carbon (a‐C:H:Si:O) films are a promising class of protective coatings for environmentally‐demanding applications owing to their lower residual stresses and superior thermal stability and oxidation resistance relative to undoped diamond‐like carbon. However, existing versions of a‐C:H:Si:O deposited by traditional methods such as plasma‐enhanced chemical vapor deposition (PECVD) undergo substantial degradation and oxidation at temperatures above 250 °C. This, together with the difficulty of PECVD in depositing conformal coatings on complex geometries such as high‐aspect‐ratio features, has limited the applicability of a‐C:H:Si:O. Here, the unique capabilities of plasma immersion ion implantation and deposition (PIIID) to grow silicon oxide‐rich diamond‐like carbon materials that are ultrasmooth, continuous, and conformal on high‐aspect‐ratio topographies are explored. The high concentration of silicon and oxygen in PIIID‐grown films (23 ± 5 at.% and 11 ± 4 at.%, respectively) is unrivalled for this class of materials, and drastically increases the resistance to oxidation at high temperatures, compared with PECVD‐grown films. The results open the path for using a‐C:H:Si:O in applications involving exposure of materials to extreme environments.</description><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNTstOQjEQbYwmEOUfJqwlub0FAXfmKmEhMRFYk6EU7mjbSdqJj43xE_xGv8SSuHDpas4r58yJ6tZ6ejUYm1F1-gd3VC_np6qqtK51PTFd9bEkT5YjPLzRzn1_fj2SbeGWMHDcFXpPzw4aTFuO13ADDcc9p4D-EtZeEubALC2sWoowIx9ggeISoYdXKvqcDkfTpcCl6ziBQi8OloLbsivvF-psjz673u89V_3Z3aqZDzgLbbIlcbYt70VnZaOHEzM2Q_Ov0A_cE1PH</recordid><startdate>20181128</startdate><enddate>20181128</enddate><creator>Mangolini, Filippo</creator><creator>McClimon, J. Brandon</creator><creator>Segersten, Justin</creator><creator>Hilbert, James</creator><creator>Heaney, Patrick</creator><creator>Lukes, Jennifer R.</creator><creator>Carpick, Robert W.</creator><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000333609122</orcidid></search><sort><creationdate>20181128</creationdate><title>Silicon Oxide‐Rich Diamond‐Like Carbon: A Conformal, Ultrasmooth Thin Film Material with High Thermo‐Oxidative Stability</title><author>Mangolini, Filippo ; McClimon, J. Brandon ; Segersten, Justin ; Hilbert, James ; Heaney, Patrick ; Lukes, Jennifer R. ; Carpick, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14837343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>McClimon, J. Brandon</creatorcontrib><creatorcontrib>Segersten, Justin</creatorcontrib><creatorcontrib>Hilbert, James</creatorcontrib><creatorcontrib>Heaney, Patrick</creatorcontrib><creatorcontrib>Lukes, Jennifer R.</creatorcontrib><creatorcontrib>Carpick, Robert W.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangolini, Filippo</au><au>McClimon, J. Brandon</au><au>Segersten, Justin</au><au>Hilbert, James</au><au>Heaney, Patrick</au><au>Lukes, Jennifer R.</au><au>Carpick, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon Oxide‐Rich Diamond‐Like Carbon: A Conformal, Ultrasmooth Thin Film Material with High Thermo‐Oxidative Stability</atitle><jtitle>Advanced materials interfaces</jtitle><date>2018-11-28</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Abstract Silicon oxide‐containing diamond‐like carbon (a‐C:H:Si:O) films are a promising class of protective coatings for environmentally‐demanding applications owing to their lower residual stresses and superior thermal stability and oxidation resistance relative to undoped diamond‐like carbon. However, existing versions of a‐C:H:Si:O deposited by traditional methods such as plasma‐enhanced chemical vapor deposition (PECVD) undergo substantial degradation and oxidation at temperatures above 250 °C. This, together with the difficulty of PECVD in depositing conformal coatings on complex geometries such as high‐aspect‐ratio features, has limited the applicability of a‐C:H:Si:O. Here, the unique capabilities of plasma immersion ion implantation and deposition (PIIID) to grow silicon oxide‐rich diamond‐like carbon materials that are ultrasmooth, continuous, and conformal on high‐aspect‐ratio topographies are explored. The high concentration of silicon and oxygen in PIIID‐grown films (23 ± 5 at.% and 11 ± 4 at.%, respectively) is unrivalled for this class of materials, and drastically increases the resistance to oxidation at high temperatures, compared with PECVD‐grown films. The results open the path for using a‐C:H:Si:O in applications involving exposure of materials to extreme environments.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley &amp; Sons)</pub><orcidid>https://orcid.org/0000000333609122</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2018-11, Vol.6 (2)
issn 2196-7350
2196-7350
language eng
recordid cdi_osti_scitechconnect_1483734
source Access via Wiley Online Library
title Silicon Oxide‐Rich Diamond‐Like Carbon: A Conformal, Ultrasmooth Thin Film Material with High Thermo‐Oxidative Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20Oxide%E2%80%90Rich%20Diamond%E2%80%90Like%20Carbon:%20A%20Conformal,%20Ultrasmooth%20Thin%20Film%20Material%20with%20High%20Thermo%E2%80%90Oxidative%20Stability&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Mangolini,%20Filippo&rft.date=2018-11-28&rft.volume=6&rft.issue=2&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/&rft_dat=%3Costi%3E1483734%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true