Structure and rheology of polyelectrolyte complex coacervates
Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile...
Gespeichert in:
Veröffentlicht in: | Soft matter 2018, Vol.14 (13), p.2454-2464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2464 |
---|---|
container_issue | 13 |
container_start_page | 2454 |
container_title | Soft matter |
container_volume | 14 |
creator | Marciel, Amanda B Srivastava, Samanvaya Tirrell, Matthew V |
description | Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration. |
doi_str_mv | 10.1039/c7sm02041d |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1482184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019177639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgSgUFn4AimBBSAWf7cb2wIDKpwRiACQ2K7EvtFUSF9tB9N8TKDAw3Q2PXt29hOwBPQHK9amVsaGMCnBrZAukEKNcCbX-t_OXAdmOcU4pVwLyTTJgmst8zGGLnD2m0NnUBcyK1mVhir72r8vMV9nC10us0abQLwkz65tFjR_9LCyG9yJh3CEbVVFH3P2ZQ_J8dfk0uRndPVzfTs7vRlYInUZFDrQSJZU5Kl2ySirQjDntpMQxiKooK5tTDZVA5xxyRxVnUpdScqVKVfIhOVjl-phmJtpZQju1vm376wwIxUCJHh2t0CL4tw5jMs0sWqzrokXfRQNacwqSc9bTw3907rvQ9i8YRkGDlDnXvTpeKRt8jAErswizpghLA9R8NW8m8vH-u_mLHu__RHZlg-6P_lbNPwHUyH08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019177639</pqid></control><display><type>article</type><title>Structure and rheology of polyelectrolyte complex coacervates</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Marciel, Amanda B ; Srivastava, Samanvaya ; Tirrell, Matthew V</creator><creatorcontrib>Marciel, Amanda B ; Srivastava, Samanvaya ; Tirrell, Matthew V ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c7sm02041d</identifier><identifier>PMID: 29376531</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chains ; Chirality ; Electrostatic properties ; Energy storage ; Glutamic acid ; Hydrogen bonding ; Hydrogen storage ; Lysine ; Molecular conformation ; Polyelectrolytes ; Polypeptides ; Rheological properties ; Rheology ; Salts ; Small angle X ray scattering ; Storage modulus ; Superposition (mathematics) ; X-ray scattering</subject><ispartof>Soft matter, 2018, Vol.14 (13), p.2454-2464</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</citedby><cites>FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</cites><orcidid>0000-0002-3519-7224 ; 0000-0001-9403-396X ; 0000-0001-6185-119X ; 000000016185119X ; 0000000235197224 ; 000000019403396X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29376531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1482184$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Marciel, Amanda B</creatorcontrib><creatorcontrib>Srivastava, Samanvaya</creatorcontrib><creatorcontrib>Tirrell, Matthew V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Structure and rheology of polyelectrolyte complex coacervates</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.</description><subject>Chains</subject><subject>Chirality</subject><subject>Electrostatic properties</subject><subject>Energy storage</subject><subject>Glutamic acid</subject><subject>Hydrogen bonding</subject><subject>Hydrogen storage</subject><subject>Lysine</subject><subject>Molecular conformation</subject><subject>Polyelectrolytes</subject><subject>Polypeptides</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Salts</subject><subject>Small angle X ray scattering</subject><subject>Storage modulus</subject><subject>Superposition (mathematics)</subject><subject>X-ray scattering</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgSgUFn4AimBBSAWf7cb2wIDKpwRiACQ2K7EvtFUSF9tB9N8TKDAw3Q2PXt29hOwBPQHK9amVsaGMCnBrZAukEKNcCbX-t_OXAdmOcU4pVwLyTTJgmst8zGGLnD2m0NnUBcyK1mVhir72r8vMV9nC10us0abQLwkz65tFjR_9LCyG9yJh3CEbVVFH3P2ZQ_J8dfk0uRndPVzfTs7vRlYInUZFDrQSJZU5Kl2ySirQjDntpMQxiKooK5tTDZVA5xxyRxVnUpdScqVKVfIhOVjl-phmJtpZQju1vm376wwIxUCJHh2t0CL4tw5jMs0sWqzrokXfRQNacwqSc9bTw3907rvQ9i8YRkGDlDnXvTpeKRt8jAErswizpghLA9R8NW8m8vH-u_mLHu__RHZlg-6P_lbNPwHUyH08</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Marciel, Amanda B</creator><creator>Srivastava, Samanvaya</creator><creator>Tirrell, Matthew V</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3519-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-396X</orcidid><orcidid>https://orcid.org/0000-0001-6185-119X</orcidid><orcidid>https://orcid.org/000000016185119X</orcidid><orcidid>https://orcid.org/0000000235197224</orcidid><orcidid>https://orcid.org/000000019403396X</orcidid></search><sort><creationdate>2018</creationdate><title>Structure and rheology of polyelectrolyte complex coacervates</title><author>Marciel, Amanda B ; Srivastava, Samanvaya ; Tirrell, Matthew V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chains</topic><topic>Chirality</topic><topic>Electrostatic properties</topic><topic>Energy storage</topic><topic>Glutamic acid</topic><topic>Hydrogen bonding</topic><topic>Hydrogen storage</topic><topic>Lysine</topic><topic>Molecular conformation</topic><topic>Polyelectrolytes</topic><topic>Polypeptides</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Salts</topic><topic>Small angle X ray scattering</topic><topic>Storage modulus</topic><topic>Superposition (mathematics)</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marciel, Amanda B</creatorcontrib><creatorcontrib>Srivastava, Samanvaya</creatorcontrib><creatorcontrib>Tirrell, Matthew V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marciel, Amanda B</au><au>Srivastava, Samanvaya</au><au>Tirrell, Matthew V</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and rheology of polyelectrolyte complex coacervates</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>13</issue><spage>2454</spage><epage>2464</epage><pages>2454-2464</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29376531</pmid><doi>10.1039/c7sm02041d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3519-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-396X</orcidid><orcidid>https://orcid.org/0000-0001-6185-119X</orcidid><orcidid>https://orcid.org/000000016185119X</orcidid><orcidid>https://orcid.org/0000000235197224</orcidid><orcidid>https://orcid.org/000000019403396X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2018, Vol.14 (13), p.2454-2464 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_osti_scitechconnect_1482184 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chains Chirality Electrostatic properties Energy storage Glutamic acid Hydrogen bonding Hydrogen storage Lysine Molecular conformation Polyelectrolytes Polypeptides Rheological properties Rheology Salts Small angle X ray scattering Storage modulus Superposition (mathematics) X-ray scattering |
title | Structure and rheology of polyelectrolyte complex coacervates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20rheology%20of%20polyelectrolyte%20complex%20coacervates&rft.jtitle=Soft%20matter&rft.au=Marciel,%20Amanda%20B&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018&rft.volume=14&rft.issue=13&rft.spage=2454&rft.epage=2464&rft.pages=2454-2464&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c7sm02041d&rft_dat=%3Cproquest_osti_%3E2019177639%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019177639&rft_id=info:pmid/29376531&rfr_iscdi=true |