Structure and rheology of polyelectrolyte complex coacervates

Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2018, Vol.14 (13), p.2454-2464
Hauptverfasser: Marciel, Amanda B, Srivastava, Samanvaya, Tirrell, Matthew V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2464
container_issue 13
container_start_page 2454
container_title Soft matter
container_volume 14
creator Marciel, Amanda B
Srivastava, Samanvaya
Tirrell, Matthew V
description Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.
doi_str_mv 10.1039/c7sm02041d
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1482184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019177639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgSgUFn4AimBBSAWf7cb2wIDKpwRiACQ2K7EvtFUSF9tB9N8TKDAw3Q2PXt29hOwBPQHK9amVsaGMCnBrZAukEKNcCbX-t_OXAdmOcU4pVwLyTTJgmst8zGGLnD2m0NnUBcyK1mVhir72r8vMV9nC10us0abQLwkz65tFjR_9LCyG9yJh3CEbVVFH3P2ZQ_J8dfk0uRndPVzfTs7vRlYInUZFDrQSJZU5Kl2ySirQjDntpMQxiKooK5tTDZVA5xxyRxVnUpdScqVKVfIhOVjl-phmJtpZQju1vm376wwIxUCJHh2t0CL4tw5jMs0sWqzrokXfRQNacwqSc9bTw3907rvQ9i8YRkGDlDnXvTpeKRt8jAErswizpghLA9R8NW8m8vH-u_mLHu__RHZlg-6P_lbNPwHUyH08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019177639</pqid></control><display><type>article</type><title>Structure and rheology of polyelectrolyte complex coacervates</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Marciel, Amanda B ; Srivastava, Samanvaya ; Tirrell, Matthew V</creator><creatorcontrib>Marciel, Amanda B ; Srivastava, Samanvaya ; Tirrell, Matthew V ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c7sm02041d</identifier><identifier>PMID: 29376531</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chains ; Chirality ; Electrostatic properties ; Energy storage ; Glutamic acid ; Hydrogen bonding ; Hydrogen storage ; Lysine ; Molecular conformation ; Polyelectrolytes ; Polypeptides ; Rheological properties ; Rheology ; Salts ; Small angle X ray scattering ; Storage modulus ; Superposition (mathematics) ; X-ray scattering</subject><ispartof>Soft matter, 2018, Vol.14 (13), p.2454-2464</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</citedby><cites>FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</cites><orcidid>0000-0002-3519-7224 ; 0000-0001-9403-396X ; 0000-0001-6185-119X ; 000000016185119X ; 0000000235197224 ; 000000019403396X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29376531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1482184$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Marciel, Amanda B</creatorcontrib><creatorcontrib>Srivastava, Samanvaya</creatorcontrib><creatorcontrib>Tirrell, Matthew V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Structure and rheology of polyelectrolyte complex coacervates</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.</description><subject>Chains</subject><subject>Chirality</subject><subject>Electrostatic properties</subject><subject>Energy storage</subject><subject>Glutamic acid</subject><subject>Hydrogen bonding</subject><subject>Hydrogen storage</subject><subject>Lysine</subject><subject>Molecular conformation</subject><subject>Polyelectrolytes</subject><subject>Polypeptides</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Salts</subject><subject>Small angle X ray scattering</subject><subject>Storage modulus</subject><subject>Superposition (mathematics)</subject><subject>X-ray scattering</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgSgUFn4AimBBSAWf7cb2wIDKpwRiACQ2K7EvtFUSF9tB9N8TKDAw3Q2PXt29hOwBPQHK9amVsaGMCnBrZAukEKNcCbX-t_OXAdmOcU4pVwLyTTJgmst8zGGLnD2m0NnUBcyK1mVhir72r8vMV9nC10us0abQLwkz65tFjR_9LCyG9yJh3CEbVVFH3P2ZQ_J8dfk0uRndPVzfTs7vRlYInUZFDrQSJZU5Kl2ySirQjDntpMQxiKooK5tTDZVA5xxyRxVnUpdScqVKVfIhOVjl-phmJtpZQju1vm376wwIxUCJHh2t0CL4tw5jMs0sWqzrokXfRQNacwqSc9bTw3907rvQ9i8YRkGDlDnXvTpeKRt8jAErswizpghLA9R8NW8m8vH-u_mLHu__RHZlg-6P_lbNPwHUyH08</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Marciel, Amanda B</creator><creator>Srivastava, Samanvaya</creator><creator>Tirrell, Matthew V</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3519-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-396X</orcidid><orcidid>https://orcid.org/0000-0001-6185-119X</orcidid><orcidid>https://orcid.org/000000016185119X</orcidid><orcidid>https://orcid.org/0000000235197224</orcidid><orcidid>https://orcid.org/000000019403396X</orcidid></search><sort><creationdate>2018</creationdate><title>Structure and rheology of polyelectrolyte complex coacervates</title><author>Marciel, Amanda B ; Srivastava, Samanvaya ; Tirrell, Matthew V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-a610f4b076e89b2f781922d9d77e514fabfc6091f4eddde3d083279b77388b8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chains</topic><topic>Chirality</topic><topic>Electrostatic properties</topic><topic>Energy storage</topic><topic>Glutamic acid</topic><topic>Hydrogen bonding</topic><topic>Hydrogen storage</topic><topic>Lysine</topic><topic>Molecular conformation</topic><topic>Polyelectrolytes</topic><topic>Polypeptides</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Salts</topic><topic>Small angle X ray scattering</topic><topic>Storage modulus</topic><topic>Superposition (mathematics)</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marciel, Amanda B</creatorcontrib><creatorcontrib>Srivastava, Samanvaya</creatorcontrib><creatorcontrib>Tirrell, Matthew V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marciel, Amanda B</au><au>Srivastava, Samanvaya</au><au>Tirrell, Matthew V</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and rheology of polyelectrolyte complex coacervates</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>13</issue><spage>2454</spage><epage>2464</epage><pages>2454-2464</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29376531</pmid><doi>10.1039/c7sm02041d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3519-7224</orcidid><orcidid>https://orcid.org/0000-0001-9403-396X</orcidid><orcidid>https://orcid.org/0000-0001-6185-119X</orcidid><orcidid>https://orcid.org/000000016185119X</orcidid><orcidid>https://orcid.org/0000000235197224</orcidid><orcidid>https://orcid.org/000000019403396X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2018, Vol.14 (13), p.2454-2464
issn 1744-683X
1744-6848
language eng
recordid cdi_osti_scitechconnect_1482184
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chains
Chirality
Electrostatic properties
Energy storage
Glutamic acid
Hydrogen bonding
Hydrogen storage
Lysine
Molecular conformation
Polyelectrolytes
Polypeptides
Rheological properties
Rheology
Salts
Small angle X ray scattering
Storage modulus
Superposition (mathematics)
X-ray scattering
title Structure and rheology of polyelectrolyte complex coacervates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20rheology%20of%20polyelectrolyte%20complex%20coacervates&rft.jtitle=Soft%20matter&rft.au=Marciel,%20Amanda%20B&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018&rft.volume=14&rft.issue=13&rft.spage=2454&rft.epage=2464&rft.pages=2454-2464&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c7sm02041d&rft_dat=%3Cproquest_osti_%3E2019177639%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019177639&rft_id=info:pmid/29376531&rfr_iscdi=true