Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers

The transition temperatures of nanoscale polymeric films are measured from a leveling experiment where a designed nanostructure is heated from below. Surface tension forces drive the relaxation of the polymeric features, allowing direct measurement of the critical temperature of collapse, T flow, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-08, Vol.10 (32), p.27432-27443
Hauptverfasser: Olaya-Muñoz, Daniel A, Nealey, Paul F, Hernández-Ortiz, Juan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27443
container_issue 32
container_start_page 27432
container_title ACS applied materials & interfaces
container_volume 10
creator Olaya-Muñoz, Daniel A
Nealey, Paul F
Hernández-Ortiz, Juan P
description The transition temperatures of nanoscale polymeric films are measured from a leveling experiment where a designed nanostructure is heated from below. Surface tension forces drive the relaxation of the polymeric features, allowing direct measurement of the critical temperature of collapse, T flow, and indirect measurement of the glass transition temperature, T G. Small-angle X-ray scattering and atomic force microscopy are used to follow the leveling dynamics, whereas a mathematical model for the momentum balance is implemented to extract the viscosity of the polymer film as a function of temperature. Our methodology is illustrated in the context of films of poly­(methyl methacrylate) that are patterned via nanoimprint lithography into dense gratings. We study how the glass transition temperature and the critical temperature of collapse vary as a function of the film size and the inclusion of the antiplasticizer, tris­(2-chloropropyl) phosphate. The grating periods are varied consistently between 80 and 240 nm, whereas the antiplasticizer concentrations are 1, 3, 5, and 10 wt %. The solution of the momentum balance allows the detailed correlation between stresses, curvature, heating, and shear rates during leveling. We found that both temperatures, T G and T flow, decrease as the film size decreases or as the concentration of the antiplasticizer increases. In addition, antiplasticizer concentrations between 3 and 5 wt % stabilize the size dependence of T flow. We show that the nature of the antiplasticizer is effectively to increase the low-temperature viscosity of the film. However, during leveling, the antiplasticized film sustains its curvature, thereby driving a sudden relaxation, once T G is reached, and increasing the possibilities of defects.
doi_str_mv 10.1021/acsami.8b06611
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1482174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2074140037</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-3f200f255ae41a4f7afd7fddf2c1deca0999bcccf1dd2acd605ab956522dd9a93</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxUVoyfc1xyJ6KoHdSrJsr3sLSZoUlraQ9ixmpVGjYEuuJBdSyP8ebbzNrafRPH7zRswj5IyzJWeCfwSdYHDL1YY1Ded75JB3Ui5WohZvXt9SHpCjlB4YayrB6n1yUDFWVS3vDsnTGv9g7_wvGiz9HvrHASO9iZC30l2Ok85TxESnMXh6iy_6J3rlBvTJFekKR_QGvUZaunyP9Cv4kDT0SMGbF-XaWtR5u-DCZzf2kLLT7i_GdELeWugTnu7qMfn5-frH5e1i_e3my-XFegFV3eZFZQVjVtQ1oOQgbQvWtNYYKzQ3qIF1XbfRWltujABtGlbDpqubWghjOuiqY_J-9g1ltUraZdT3Onhf_qW4XAneygJ9mKExht8TpqwGlzT2PXgMU1KCtZLLcrm2oMsZ1TGkFNGqMboB4qPiTG1zUXMuapdLGXi38542A5pX_F8QBTifgTKoHsIUfbnH_9yeAVpbmlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074140037</pqid></control><display><type>article</type><title>Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers</title><source>ACS Publications</source><creator>Olaya-Muñoz, Daniel A ; Nealey, Paul F ; Hernández-Ortiz, Juan P</creator><creatorcontrib>Olaya-Muñoz, Daniel A ; Nealey, Paul F ; Hernández-Ortiz, Juan P ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The transition temperatures of nanoscale polymeric films are measured from a leveling experiment where a designed nanostructure is heated from below. Surface tension forces drive the relaxation of the polymeric features, allowing direct measurement of the critical temperature of collapse, T flow, and indirect measurement of the glass transition temperature, T G. Small-angle X-ray scattering and atomic force microscopy are used to follow the leveling dynamics, whereas a mathematical model for the momentum balance is implemented to extract the viscosity of the polymer film as a function of temperature. Our methodology is illustrated in the context of films of poly­(methyl methacrylate) that are patterned via nanoimprint lithography into dense gratings. We study how the glass transition temperature and the critical temperature of collapse vary as a function of the film size and the inclusion of the antiplasticizer, tris­(2-chloropropyl) phosphate. The grating periods are varied consistently between 80 and 240 nm, whereas the antiplasticizer concentrations are 1, 3, 5, and 10 wt %. The solution of the momentum balance allows the detailed correlation between stresses, curvature, heating, and shear rates during leveling. We found that both temperatures, T G and T flow, decrease as the film size decreases or as the concentration of the antiplasticizer increases. In addition, antiplasticizer concentrations between 3 and 5 wt % stabilize the size dependence of T flow. We show that the nature of the antiplasticizer is effectively to increase the low-temperature viscosity of the film. However, during leveling, the antiplasticized film sustains its curvature, thereby driving a sudden relaxation, once T G is reached, and increasing the possibilities of defects.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b06611</identifier><identifier>PMID: 30033719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>glass transition ; polymer ; radial basis functions ; surface tension ; thin films</subject><ispartof>ACS applied materials &amp; interfaces, 2018-08, Vol.10 (32), p.27432-27443</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-3f200f255ae41a4f7afd7fddf2c1deca0999bcccf1dd2acd605ab956522dd9a93</citedby><cites>FETCH-LOGICAL-a357t-3f200f255ae41a4f7afd7fddf2c1deca0999bcccf1dd2acd605ab956522dd9a93</cites><orcidid>0000-0003-0404-9947 ; 0000-0003-3889-142X ; 000000033889142X ; 0000000304049947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b06611$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b06611$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30033719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1482174$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Olaya-Muñoz, Daniel A</creatorcontrib><creatorcontrib>Nealey, Paul F</creatorcontrib><creatorcontrib>Hernández-Ortiz, Juan P</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The transition temperatures of nanoscale polymeric films are measured from a leveling experiment where a designed nanostructure is heated from below. Surface tension forces drive the relaxation of the polymeric features, allowing direct measurement of the critical temperature of collapse, T flow, and indirect measurement of the glass transition temperature, T G. Small-angle X-ray scattering and atomic force microscopy are used to follow the leveling dynamics, whereas a mathematical model for the momentum balance is implemented to extract the viscosity of the polymer film as a function of temperature. Our methodology is illustrated in the context of films of poly­(methyl methacrylate) that are patterned via nanoimprint lithography into dense gratings. We study how the glass transition temperature and the critical temperature of collapse vary as a function of the film size and the inclusion of the antiplasticizer, tris­(2-chloropropyl) phosphate. The grating periods are varied consistently between 80 and 240 nm, whereas the antiplasticizer concentrations are 1, 3, 5, and 10 wt %. The solution of the momentum balance allows the detailed correlation between stresses, curvature, heating, and shear rates during leveling. We found that both temperatures, T G and T flow, decrease as the film size decreases or as the concentration of the antiplasticizer increases. In addition, antiplasticizer concentrations between 3 and 5 wt % stabilize the size dependence of T flow. We show that the nature of the antiplasticizer is effectively to increase the low-temperature viscosity of the film. However, during leveling, the antiplasticized film sustains its curvature, thereby driving a sudden relaxation, once T G is reached, and increasing the possibilities of defects.</description><subject>glass transition</subject><subject>polymer</subject><subject>radial basis functions</subject><subject>surface tension</subject><subject>thin films</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1r3DAQxUVoyfc1xyJ6KoHdSrJsr3sLSZoUlraQ9ixmpVGjYEuuJBdSyP8ebbzNrafRPH7zRswj5IyzJWeCfwSdYHDL1YY1Ded75JB3Ui5WohZvXt9SHpCjlB4YayrB6n1yUDFWVS3vDsnTGv9g7_wvGiz9HvrHASO9iZC30l2Ok85TxESnMXh6iy_6J3rlBvTJFekKR_QGvUZaunyP9Cv4kDT0SMGbF-XaWtR5u-DCZzf2kLLT7i_GdELeWugTnu7qMfn5-frH5e1i_e3my-XFegFV3eZFZQVjVtQ1oOQgbQvWtNYYKzQ3qIF1XbfRWltujABtGlbDpqubWghjOuiqY_J-9g1ltUraZdT3Onhf_qW4XAneygJ9mKExht8TpqwGlzT2PXgMU1KCtZLLcrm2oMsZ1TGkFNGqMboB4qPiTG1zUXMuapdLGXi38542A5pX_F8QBTifgTKoHsIUfbnH_9yeAVpbmlA</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Olaya-Muñoz, Daniel A</creator><creator>Nealey, Paul F</creator><creator>Hernández-Ortiz, Juan P</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0404-9947</orcidid><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid><orcidid>https://orcid.org/0000000304049947</orcidid></search><sort><creationdate>20180815</creationdate><title>Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers</title><author>Olaya-Muñoz, Daniel A ; Nealey, Paul F ; Hernández-Ortiz, Juan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-3f200f255ae41a4f7afd7fddf2c1deca0999bcccf1dd2acd605ab956522dd9a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>glass transition</topic><topic>polymer</topic><topic>radial basis functions</topic><topic>surface tension</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olaya-Muñoz, Daniel A</creatorcontrib><creatorcontrib>Nealey, Paul F</creatorcontrib><creatorcontrib>Hernández-Ortiz, Juan P</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olaya-Muñoz, Daniel A</au><au>Nealey, Paul F</au><au>Hernández-Ortiz, Juan P</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>10</volume><issue>32</issue><spage>27432</spage><epage>27443</epage><pages>27432-27443</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The transition temperatures of nanoscale polymeric films are measured from a leveling experiment where a designed nanostructure is heated from below. Surface tension forces drive the relaxation of the polymeric features, allowing direct measurement of the critical temperature of collapse, T flow, and indirect measurement of the glass transition temperature, T G. Small-angle X-ray scattering and atomic force microscopy are used to follow the leveling dynamics, whereas a mathematical model for the momentum balance is implemented to extract the viscosity of the polymer film as a function of temperature. Our methodology is illustrated in the context of films of poly­(methyl methacrylate) that are patterned via nanoimprint lithography into dense gratings. We study how the glass transition temperature and the critical temperature of collapse vary as a function of the film size and the inclusion of the antiplasticizer, tris­(2-chloropropyl) phosphate. The grating periods are varied consistently between 80 and 240 nm, whereas the antiplasticizer concentrations are 1, 3, 5, and 10 wt %. The solution of the momentum balance allows the detailed correlation between stresses, curvature, heating, and shear rates during leveling. We found that both temperatures, T G and T flow, decrease as the film size decreases or as the concentration of the antiplasticizer increases. In addition, antiplasticizer concentrations between 3 and 5 wt % stabilize the size dependence of T flow. We show that the nature of the antiplasticizer is effectively to increase the low-temperature viscosity of the film. However, during leveling, the antiplasticized film sustains its curvature, thereby driving a sudden relaxation, once T G is reached, and increasing the possibilities of defects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30033719</pmid><doi>10.1021/acsami.8b06611</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0404-9947</orcidid><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid><orcidid>https://orcid.org/0000000304049947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-08, Vol.10 (32), p.27432-27443
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1482174
source ACS Publications
subjects glass transition
polymer
radial basis functions
surface tension
thin films
title Leveling of Polymer Grating Structures upon Heating: Dimension Dependence on the Nanoscale and the Effect of Antiplasticizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveling%20of%20Polymer%20Grating%20Structures%20upon%20Heating:%20Dimension%20Dependence%20on%20the%20Nanoscale%20and%20the%20Effect%20of%20Antiplasticizers&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Olaya-Mun%CC%83oz,%20Daniel%20A&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-08-15&rft.volume=10&rft.issue=32&rft.spage=27432&rft.epage=27443&rft.pages=27432-27443&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b06611&rft_dat=%3Cproquest_osti_%3E2074140037%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074140037&rft_id=info:pmid/30033719&rfr_iscdi=true