Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations

We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2018-11, Vol.2 (11), Article 113605
Hauptverfasser: Fellinger, Michael R., Tan, Anne Marie Z., Hector, Louis G., Trinkle, Dallas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review materials
container_volume 2
creator Fellinger, Michael R.
Tan, Anne Marie Z.
Hector, Louis G.
Trinkle, Dallas R.
description We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations.
doi_str_mv 10.1103/PhysRevMaterials.2.113605
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1481001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevMaterials_2_113605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWGq_Q_S-Nf92NzlKsVWoKKJeQ5pMbGR3I0kU--1dWQ_iaYbHb4b3HkLnlCwpJfzyYX_Ij_B5ZwqkYLq8ZKPOG1IfoRkTbV0pVfPjP_spWuT8RgihsqasVTP0soHYQ0kBMo4eg3sFbAaH-_AFDruQu2hNCXHIOAx4Zy1eA_Yp9tiHlEv1nsJgw3s3nlvT2Y9ugs_QiR8NweJ3ztHz-vppdVNt7ze3q6ttZTlXpVK-MYQ7JoBJAdKCUa0zTUM43TnwUni2axRnFEBJ0SohZatgVKkTknnC5-hi-htzCTrbUMDubRwGsEVTIekYdYTUBNkUc07g9ei6N-mgKdE_Rer_RWqmpyL5N_Q3bE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</title><source>American Physical Society Journals</source><creator>Fellinger, Michael R. ; Tan, Anne Marie Z. ; Hector, Louis G. ; Trinkle, Dallas R.</creator><creatorcontrib>Fellinger, Michael R. ; Tan, Anne Marie Z. ; Hector, Louis G. ; Trinkle, Dallas R. ; General Motors Global R&amp;D Center, Warren, MI (United States) ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.2.113605</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>bcc Fe ; DFT ; dislocation ; edge, mixed ; first principles ; iron ; MATERIALS SCIENCE</subject><ispartof>Physical review materials, 2018-11, Vol.2 (11), Article 113605</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</citedby><cites>FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1481001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fellinger, Michael R.</creatorcontrib><creatorcontrib>Tan, Anne Marie Z.</creatorcontrib><creatorcontrib>Hector, Louis G.</creatorcontrib><creatorcontrib>Trinkle, Dallas R.</creatorcontrib><creatorcontrib>General Motors Global R&amp;D Center, Warren, MI (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</title><title>Physical review materials</title><description>We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations.</description><subject>bcc Fe</subject><subject>DFT</subject><subject>dislocation</subject><subject>edge, mixed</subject><subject>first principles</subject><subject>iron</subject><subject>MATERIALS SCIENCE</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LAzEQxYMoWGq_Q_S-Nf92NzlKsVWoKKJeQ5pMbGR3I0kU--1dWQ_iaYbHb4b3HkLnlCwpJfzyYX_Ij_B5ZwqkYLq8ZKPOG1IfoRkTbV0pVfPjP_spWuT8RgihsqasVTP0soHYQ0kBMo4eg3sFbAaH-_AFDruQu2hNCXHIOAx4Zy1eA_Yp9tiHlEv1nsJgw3s3nlvT2Y9ugs_QiR8NweJ3ztHz-vppdVNt7ze3q6ttZTlXpVK-MYQ7JoBJAdKCUa0zTUM43TnwUni2axRnFEBJ0SohZatgVKkTknnC5-hi-htzCTrbUMDubRwGsEVTIekYdYTUBNkUc07g9ei6N-mgKdE_Rer_RWqmpyL5N_Q3bE0</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Fellinger, Michael R.</creator><creator>Tan, Anne Marie Z.</creator><creator>Hector, Louis G.</creator><creator>Trinkle, Dallas R.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20181126</creationdate><title>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</title><author>Fellinger, Michael R. ; Tan, Anne Marie Z. ; Hector, Louis G. ; Trinkle, Dallas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bcc Fe</topic><topic>DFT</topic><topic>dislocation</topic><topic>edge, mixed</topic><topic>first principles</topic><topic>iron</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fellinger, Michael R.</creatorcontrib><creatorcontrib>Tan, Anne Marie Z.</creatorcontrib><creatorcontrib>Hector, Louis G.</creatorcontrib><creatorcontrib>Trinkle, Dallas R.</creatorcontrib><creatorcontrib>General Motors Global R&amp;D Center, Warren, MI (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fellinger, Michael R.</au><au>Tan, Anne Marie Z.</au><au>Hector, Louis G.</au><au>Trinkle, Dallas R.</au><aucorp>General Motors Global R&amp;D Center, Warren, MI (United States)</aucorp><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</atitle><jtitle>Physical review materials</jtitle><date>2018-11-26</date><risdate>2018</risdate><volume>2</volume><issue>11</issue><artnum>113605</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.2.113605</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2018-11, Vol.2 (11), Article 113605
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1481001
source American Physical Society Journals
subjects bcc Fe
DFT
dislocation
edge, mixed
first principles
iron
MATERIALS SCIENCE
title Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometries%20of%20edge%20and%20mixed%20dislocations%20in%20bcc%20Fe%20from%20first-principles%20calculations&rft.jtitle=Physical%20review%20materials&rft.au=Fellinger,%20Michael%20R.&rft.aucorp=General%20Motors%20Global%20R&D%20Center,%20Warren,%20MI%20(United%20States)&rft.date=2018-11-26&rft.volume=2&rft.issue=11&rft.artnum=113605&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.2.113605&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevMaterials_2_113605%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true