Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations
We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible bo...
Gespeichert in:
Veröffentlicht in: | Physical review materials 2018-11, Vol.2 (11), Article 113605 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physical review materials |
container_volume | 2 |
creator | Fellinger, Michael R. Tan, Anne Marie Z. Hector, Louis G. Trinkle, Dallas R. |
description | We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations. |
doi_str_mv | 10.1103/PhysRevMaterials.2.113605 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1481001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevMaterials_2_113605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWGq_Q_S-Nf92NzlKsVWoKKJeQ5pMbGR3I0kU--1dWQ_iaYbHb4b3HkLnlCwpJfzyYX_Ij_B5ZwqkYLq8ZKPOG1IfoRkTbV0pVfPjP_spWuT8RgihsqasVTP0soHYQ0kBMo4eg3sFbAaH-_AFDruQu2hNCXHIOAx4Zy1eA_Yp9tiHlEv1nsJgw3s3nlvT2Y9ugs_QiR8NweJ3ztHz-vppdVNt7ze3q6ttZTlXpVK-MYQ7JoBJAdKCUa0zTUM43TnwUni2axRnFEBJ0SohZatgVKkTknnC5-hi-htzCTrbUMDubRwGsEVTIekYdYTUBNkUc07g9ei6N-mgKdE_Rer_RWqmpyL5N_Q3bE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</title><source>American Physical Society Journals</source><creator>Fellinger, Michael R. ; Tan, Anne Marie Z. ; Hector, Louis G. ; Trinkle, Dallas R.</creator><creatorcontrib>Fellinger, Michael R. ; Tan, Anne Marie Z. ; Hector, Louis G. ; Trinkle, Dallas R. ; General Motors Global R&D Center, Warren, MI (United States) ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.2.113605</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>bcc Fe ; DFT ; dislocation ; edge, mixed ; first principles ; iron ; MATERIALS SCIENCE</subject><ispartof>Physical review materials, 2018-11, Vol.2 (11), Article 113605</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</citedby><cites>FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1481001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fellinger, Michael R.</creatorcontrib><creatorcontrib>Tan, Anne Marie Z.</creatorcontrib><creatorcontrib>Hector, Louis G.</creatorcontrib><creatorcontrib>Trinkle, Dallas R.</creatorcontrib><creatorcontrib>General Motors Global R&D Center, Warren, MI (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</title><title>Physical review materials</title><description>We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations.</description><subject>bcc Fe</subject><subject>DFT</subject><subject>dislocation</subject><subject>edge, mixed</subject><subject>first principles</subject><subject>iron</subject><subject>MATERIALS SCIENCE</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LAzEQxYMoWGq_Q_S-Nf92NzlKsVWoKKJeQ5pMbGR3I0kU--1dWQ_iaYbHb4b3HkLnlCwpJfzyYX_Ij_B5ZwqkYLq8ZKPOG1IfoRkTbV0pVfPjP_spWuT8RgihsqasVTP0soHYQ0kBMo4eg3sFbAaH-_AFDruQu2hNCXHIOAx4Zy1eA_Yp9tiHlEv1nsJgw3s3nlvT2Y9ugs_QiR8NweJ3ztHz-vppdVNt7ze3q6ttZTlXpVK-MYQ7JoBJAdKCUa0zTUM43TnwUni2axRnFEBJ0SohZatgVKkTknnC5-hi-htzCTrbUMDubRwGsEVTIekYdYTUBNkUc07g9ei6N-mgKdE_Rer_RWqmpyL5N_Q3bE0</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Fellinger, Michael R.</creator><creator>Tan, Anne Marie Z.</creator><creator>Hector, Louis G.</creator><creator>Trinkle, Dallas R.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20181126</creationdate><title>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</title><author>Fellinger, Michael R. ; Tan, Anne Marie Z. ; Hector, Louis G. ; Trinkle, Dallas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9f6a03d24e284e8cea97da66031bdef84f2b69321ee9847948879e4f21d482f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bcc Fe</topic><topic>DFT</topic><topic>dislocation</topic><topic>edge, mixed</topic><topic>first principles</topic><topic>iron</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fellinger, Michael R.</creatorcontrib><creatorcontrib>Tan, Anne Marie Z.</creatorcontrib><creatorcontrib>Hector, Louis G.</creatorcontrib><creatorcontrib>Trinkle, Dallas R.</creatorcontrib><creatorcontrib>General Motors Global R&D Center, Warren, MI (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fellinger, Michael R.</au><au>Tan, Anne Marie Z.</au><au>Hector, Louis G.</au><au>Trinkle, Dallas R.</au><aucorp>General Motors Global R&D Center, Warren, MI (United States)</aucorp><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations</atitle><jtitle>Physical review materials</jtitle><date>2018-11-26</date><risdate>2018</risdate><volume>2</volume><issue>11</issue><artnum>113605</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>We use density functional theory (DFT) to compute the core structures of $a_0[100](010)$ edge, $a_0[100](011)$ edge, $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations in body-centered cubic (bcc) Fe. The calculations are performed using flexible boundary conditions (FBC), which effectively allow the dislocations to relax as isolated defects by coupling the DFT core to an infinite harmonic lattice through the lattice Green function (LGF). We use the LGFs of the dislocated geometries in contrast to most previous FBC-based dislocation calculations that use the LGF of the bulk crystal. The dislocation LGFs account for changes in the topology of the crystal in the core as well as local strain throughout the crystal lattice. A simple bulk-like approximation for the force constants in a dislocated geometry leads to dislocation LGFs that optimize the core structures of the $a_0[100](010)$ edge, $a_0[100](011)$ edge, and $a_0/2[111](1\bar{1}0)$ $71^{\circ}$ mixed dislocations. This approximation fails for the $a_0/2[\bar{1}\bar{1}1](1\bar{1}0)$ dislocation however, so in this case we derive the LGF from more accurate force constants computed using a Gaussian approximation potential. The standard deviations of the dislocation Nye tensor distributions quantify the widths of the dislocation cores. The relaxed cores are compact, and the local magnetic moments on the Fe atoms closely follow the volumetric strain distributions in the cores. We also compute the core structures of these dislocations using eight different classical interatomic potentials, and quantify symmetry differences between the cores using the Fourier coefficients of their Nye tensor distributions. Most of the core structures computed using the classical potentials agree well with the DFT results. Furthermore the DFT core geometries provide benchmarking for classical potential studies of work-hardening, as well as substitutional and interstitial sites for computing solute-dislocation interactions that serve as inputs for mesoscale models of solute strengthening and solute diffusion near dislocations.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.2.113605</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-9953 |
ispartof | Physical review materials, 2018-11, Vol.2 (11), Article 113605 |
issn | 2475-9953 2475-9953 |
language | eng |
recordid | cdi_osti_scitechconnect_1481001 |
source | American Physical Society Journals |
subjects | bcc Fe DFT dislocation edge, mixed first principles iron MATERIALS SCIENCE |
title | Geometries of edge and mixed dislocations in bcc Fe from first-principles calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometries%20of%20edge%20and%20mixed%20dislocations%20in%20bcc%20Fe%20from%20first-principles%20calculations&rft.jtitle=Physical%20review%20materials&rft.au=Fellinger,%20Michael%20R.&rft.aucorp=General%20Motors%20Global%20R&D%20Center,%20Warren,%20MI%20(United%20States)&rft.date=2018-11-26&rft.volume=2&rft.issue=11&rft.artnum=113605&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.2.113605&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevMaterials_2_113605%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |